Analysis of Human Exercise Health Monitoring Data of Smart Bracelet Based on Machine Learning

计算机科学 机器学习 大数据 人工智能 人口 算法 数据挖掘 医学 环境卫生
作者
Xiaoge Ma
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:3
标识
DOI:10.1155/2022/7971904
摘要

The smart bracelet has become a hot-selling commodity, according to a daily consumption survey. Based on people’s interest and concern for their health, the smart bracelet, as a design and application for achieving healthy weight loss monitoring, is quickly becoming a popular new favorite. This bracelet detects fat using the near-infrared diffuse reflection principle, with the goal of assisting people in controlling and maintaining a healthy weight. A large amount of data has been accumulated in all walks of life due to the development of the Internet network and data storage technology. As a result, the emergence of machine learning plays a critical role in the data analysis of human sports health monitoring of smart bracelets. Based on machine learning, this paper investigates the data analysis of human sports health monitoring smart bracelets. When the population index reaches 50 in the analysis of health monitoring data, the average accuracy of data mining is 86.8 percent, the average accuracy of the association rule algorithm is 85.9 percent, the average accuracy of the collaborative filtering algorithm is 84.3 percent, and the average accuracy of the machine learning algorithm is 90.1 percent in this paper. Among the four algorithms, the method presented in this paper is clearly the most effective, stable, and accurate. The system’s stability and accuracy have been greatly improved by the addition of GPS-assisted and hand-up misjudgment algorithms. Because the smart bracelet is inexpensive, easy to wear, and consistent with consumer psychology, it is becoming increasingly popular to use it to monitor the human body’s sports health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHEN发布了新的文献求助10
1秒前
迪克牛仔完成签到 ,获得积分10
1秒前
小二郎应助yazhi采纳,获得10
1秒前
XXY发布了新的文献求助10
2秒前
陈澜完成签到,获得积分20
2秒前
清秀聪健完成签到,获得积分10
3秒前
核桃应助后来采纳,获得10
4秒前
扭扭车完成签到,获得积分10
5秒前
6秒前
chichqq完成签到,获得积分10
6秒前
Ava应助王杰采纳,获得10
7秒前
CipherSage应助小玉米采纳,获得30
8秒前
MineMine应助高天雨采纳,获得10
9秒前
陈澜发布了新的文献求助10
9秒前
10秒前
田様应助王煜采纳,获得10
10秒前
英俊的铭应助chenman9397采纳,获得10
11秒前
13秒前
小蘑菇应助lileilei采纳,获得10
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
chichqq发布了新的文献求助10
15秒前
william完成签到,获得积分10
15秒前
大个应助rr采纳,获得10
15秒前
16秒前
16秒前
葡萄蛋挞完成签到,获得积分10
17秒前
充电宝应助扭扭车采纳,获得10
17秒前
樊舒豪发布了新的文献求助10
17秒前
21秒前
peipei发布了新的文献求助10
21秒前
任笑笑关注了科研通微信公众号
22秒前
22秒前
23秒前
24秒前
可爱的函函应助LL采纳,获得10
26秒前
yan发布了新的文献求助10
26秒前
ajiduo完成签到 ,获得积分10
27秒前
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870718
求助须知:如何正确求助?哪些是违规求助? 3412820
关于积分的说明 10681363
捐赠科研通 3137252
什么是DOI,文献DOI怎么找? 1730812
邀请新用户注册赠送积分活动 834360
科研通“疑难数据库(出版商)”最低求助积分说明 781154