亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gender biases in impressions from faces: Empirical studies and computational models

心理学 印象形成 特质 可信赖性 社会心理学 优势(遗传学) 价(化学) 面部知觉 面子(社会学概念) 社会认知 感知 印象
作者
DongWon Oh,Ron Dotsch,Jenny Porter,Alexander Todorov
标识
DOI:10.31234/osf.io/fxvcu
摘要

Trustworthiness and dominance impressions summarize trait judgments from faces. Judgments on these key traits are negatively correlated to each other in impressions of female faces, implying less differentiated impressions of female faces. Here we test whether this is true across many trait judgments and whether less differentiated impressions of female faces originate in different facial information used for male and female impressions or different evaluation of the same information. Using multidimensional rating datasets and data-driven modeling, we show that (1) impressions of women are less differentiated and more valence-laden than impressions of men, and find that (2) these impressions are based on similar visual information across face genders. Female face impressions were more highly intercorrelated and were better explained by valence (Study 1). These intercorrelations were higher when raters more strongly endorsed gender stereotypes. Despite the gender difference, male and female impression models – derived from separate trustworthiness and dominance ratings of male and female faces – were similar to each other (Study 2). Further, both male and female models could manipulate impressions of faces of both genders (Study 3). The results highlight the high-level, evaluative effect of face gender in impression formation – women are judged negatively to the extent their looks do not conform to expectations, not because people use different facial information across genders, but because people evaluate the information differently across genders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
jiangjiang完成签到 ,获得积分10
24秒前
31秒前
ma发布了新的文献求助10
36秒前
50秒前
mkeale应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
mkeale应助科研通管家采纳,获得10
1分钟前
mkeale应助科研通管家采纳,获得20
1分钟前
葛力发布了新的文献求助10
2分钟前
酷波er应助葛力采纳,获得10
2分钟前
dawn发布了新的文献求助10
2分钟前
2分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
4分钟前
葛力完成签到,获得积分10
4分钟前
4分钟前
哈哈哈完成签到,获得积分10
4分钟前
dawn发布了新的文献求助10
4分钟前
5分钟前
liwang9301完成签到,获得积分10
5分钟前
S1mple完成签到,获得积分10
5分钟前
北国雪未消完成签到 ,获得积分10
5分钟前
丘比特应助dawn采纳,获得10
6分钟前
草木发布了新的文献求助10
6分钟前
6分钟前
泥娃娃完成签到,获得积分10
6分钟前
草木发布了新的文献求助10
6分钟前
我要读博完成签到 ,获得积分10
6分钟前
7分钟前
草木完成签到,获得积分20
7分钟前
juan完成签到 ,获得积分10
7分钟前
优雅山柏发布了新的文献求助10
7分钟前
孙燕应助科研通管家采纳,获得10
7分钟前
7分钟前
科研通AI2S应助草木采纳,获得10
8分钟前
YifanWang应助科研通管家采纳,获得30
9分钟前
KINGAZX完成签到 ,获得积分10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526401
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603