微晶
晶界
材料科学
纳米晶材料
原子单位
相变
微晶
化学物理
相(物质)
凝聚态物理
透射电子显微镜
缩放比例
结晶学
纳米技术
冶金
微观结构
化学
几何学
物理
有机化学
量子力学
数学
作者
Hualei Yuan,Kaiwen Wang,Hanwen Hu,Lei Yang,Jie Chen,Kun Zheng
标识
DOI:10.1002/adma.202205715
摘要
Phase transition is a physical phenomenon that attracts great interest of researchers. Although the theory of second-order phase transitions is well-established, their atomic-scale dynamics in polycrystalline materials remains elusive. In this work, second-order phase transitions in polycrystalline Cu2 Se at the transition temperature are directly observed by in situ aberration-corrected transmission electron microscopy. Phase transitions in microcrystalline Cu2 Se start at the grain boundaries and extend inside the grains. This phenomenon is more pronounced in nanosized grains. Analysis of phase transitions in nanocrystalline Cu2 Se with different grain boundaries demonstrates that grain boundary energy dominates unsynchronized phase transition behavior. This suggests that the energy of grain boundaries is the key factor influencing the energetic barrier for initiation of phase transition. The findings advance atomic-scale understanding of second-order phase transitions, which is crucial for the control of this process in polycrystalline materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI