Boron-doped high-entropy oxide toward high-rate and long-cycle layered cathodes for wide-temperature sodium-ion batteries

兴奋剂 材料科学 离子 氧化物 化学工程 阴极 纳米技术 化学 光电子学 物理化学 冶金 有机化学 工程类
作者
Yuzhen Dang,Zhe Xu,Yurong Wu,Runguo Zheng,Zhiyuan Wang,Xiaopin Lin,Yanguo Liu,Zhengyao Li,Kai Sun,Dongfeng Chen,Dan Wang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:95: 577-587 被引量:70
标识
DOI:10.1016/j.jechem.2024.03.055
摘要

O3-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage. However, the severe irreversible phase transition and sluggish Na+ diffusion kinetics pose significant challenges to achieve high-performance layered cathodes. Herein, a boron-doped O3-type high entropy oxide Na(Fe0.2Co0.15Cu0.05Ni0.2Mn0.2Ti0.2)B0.02O2 (NFCCNMT-B0.02) is designed and the covalent B-O bonds with high entropy configuration ensures a robust layered structure. The obtained cathode NFCCNMT-B0.02 exhibits impressive cycling performance (capacity retention of 95% and 82% after 100 cycles and 300 cycles at 1 C and 10 C, respectively) and outstanding rate capability (capacity of 83 mAh g−1 at 10 C). Furthermore, the NFCCNMT-B0.02 demonstrates a superior wide-temperature performance, maintaining the same capacity level (113.4 mAh g−1@-20 ℃, 121 mAh g−1@25 ℃, and 119 mAh g−1@60 ℃) and superior cycle stability (90% capacity retention after 100 cycles at 1 C at -20 ℃). The high-entropy configuration design with boron doping strategy contributes to the excellent sodium-ion storage performance. The high-entropy configuration design effectively suppresses irreversible phase transitions accompanied by small volume changes (ΔV=0.65 \AA3). B ions doping expands the Na layer distance and enlarges the P3 phase region, thereby enhancing Na+ diffusion kinetics. This work offers valuable insights into design of high-performance layered cathodes for sodium-ion batteries operating across a wide temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PYR发布了新的文献求助10
刚刚
xiu发布了新的文献求助10
1秒前
科研通AI2S应助迪迪采纳,获得10
1秒前
科研通AI6应助mengyao采纳,获得10
2秒前
111发布了新的文献求助10
2秒前
许可证发布了新的文献求助10
2秒前
2秒前
3秒前
端庄千山发布了新的文献求助30
3秒前
Jasper应助简单点吧采纳,获得10
3秒前
3秒前
3秒前
katana完成签到,获得积分10
4秒前
蒋雪静发布了新的文献求助10
4秒前
Ma_Cong完成签到,获得积分10
4秒前
4秒前
豆子完成签到,获得积分10
5秒前
情怀应助豆豆突采纳,获得10
6秒前
wwb发布了新的文献求助10
6秒前
6秒前
Lucas应助源西瓜采纳,获得30
6秒前
英俊的铭应助zoe采纳,获得10
7秒前
lzx发布了新的文献求助10
7秒前
7秒前
7秒前
不想起床发布了新的文献求助10
8秒前
CHESSE发布了新的文献求助10
8秒前
8秒前
宁祚完成签到,获得积分10
8秒前
一一发布了新的文献求助10
9秒前
俭朴晓凡发布了新的文献求助10
9秒前
冰糖橙完成签到 ,获得积分10
9秒前
平心定气完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
ruanruan完成签到,获得积分10
12秒前
12秒前
脑洞疼应助坚强的缘分采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649113
求助须知:如何正确求助?哪些是违规求助? 4777225
关于积分的说明 15046529
捐赠科研通 4807973
什么是DOI,文献DOI怎么找? 2571189
邀请新用户注册赠送积分活动 1527771
关于科研通互助平台的介绍 1486697