Lattice oxygen-mediated Co–O–Fe formation in Co-MOF via Fe doping and ligand design for efficient oxygen evolution

过电位 析氧 材料科学 塔菲尔方程 电催化剂 分解水 金属有机骨架 化学工程 阳极 氧气 纳米技术 催化作用 电化学 电极 物理化学 化学 生物化学 光催化 吸附 工程类 有机化学
作者
Tao Zhao,Dazhong Zhong,Qiang Fang,Xin Zhao,Runxin Du,Genyan Hao,Guang Liu,Jinping Li,Qiang Zhao
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:189: 183-190 被引量:29
标识
DOI:10.1016/j.jmst.2023.11.070
摘要

The rational design of metal-organic frameworks (MOFs) provides potential opportunities for improving energy conversion efficiency. However, developing efficient MOF-based electrocatalysts remains highly challenging. Herein, a strategy involving strain engineering is developed to promote the electrocatalytic performance of MOFs by optimizing electronic configuration and improving the active site. As expected, the optimized CoFe–BDC-NO2 exhibits a low overpotential of 292 mV at 10 mA cm–2 and a small Tafel slope of 31.6 mV dec–1 as oxygen evolution reaction (OER) electrocatalyst. Notably, when CoFe–BDC-NO2 is prepared on Nickel foam (NF), the overpotential is only 345 mV at 1 A cm–2, which ensures efficient water oxidation properties. Integrating CoFe–BDC-NO2/NF anode in membrane electrode assembly (MEA) for overall water splitting and CO2 reduction reaction (CO2RR) tests, the results show that the cell voltages of CoFe–BDC-NO2/NF are 3.14 and 3.09 V at 300 mA cm–2 (25 ℃), respectively, indicating that MOFs have various practical application prospects. The research of the structure-performance relationship reveals the lattice oxygen oxidation mechanism (LOM) where the Co-O-Fe bond is formed during the OER process by changing the electronic environment and coordination structure of CoFe–BDC-NO2, and with high valence Co as active center, which provides a deep understanding of the structure design of MOFs and their structural transformation during OER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
隐形曼青应助奚奚采纳,获得10
2秒前
3秒前
4秒前
hh发布了新的文献求助10
4秒前
乔佳怡发布了新的文献求助10
4秒前
文静勒应助aaaaa小柴采纳,获得50
5秒前
大个应助泰山球迷采纳,获得10
5秒前
dw发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
9秒前
9秒前
浮游应助lc339采纳,获得10
9秒前
杨冀军完成签到 ,获得积分10
11秒前
11秒前
我是老大应助永梦双星采纳,获得10
12秒前
12秒前
小呆完成签到 ,获得积分10
12秒前
欢呼的芹发布了新的文献求助10
12秒前
13秒前
hh完成签到,获得积分10
13秒前
科研通AI6应助yixin采纳,获得10
13秒前
夏cai发布了新的文献求助30
14秒前
14秒前
15秒前
mnm发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
无极微光发布了新的文献求助20
17秒前
17秒前
18秒前
badjack发布了新的文献求助20
18秒前
ZunyeLiu发布了新的文献求助10
18秒前
19秒前
乔佳怡完成签到,获得积分10
19秒前
Rachel发布了新的文献求助10
19秒前
xin发布了新的文献求助10
20秒前
彭于晏应助mnm采纳,获得10
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687