A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

计算机科学 断层(地质) 人工智能 特征(语言学) 领域(数学分析) 领域知识 学习迁移 数据挖掘 特征选择 机器学习 数学分析 语言学 哲学 数学 地震学 地质学
作者
Tianyu Gao,Jingli Yang,Qing Tang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:106: 102278-102278 被引量:56
标识
DOI:10.1016/j.inffus.2024.102278
摘要

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shirley完成签到 ,获得积分10
刚刚
cure发布了新的文献求助10
1秒前
彭大啦啦完成签到 ,获得积分10
2秒前
lee完成签到 ,获得积分10
2秒前
文献通发布了新的文献求助10
3秒前
开心的白昼完成签到,获得积分10
3秒前
3秒前
4秒前
无情的访冬完成签到 ,获得积分10
6秒前
hahaha完成签到,获得积分10
7秒前
7秒前
jenningseastera完成签到,获得积分10
8秒前
清秀紫真完成签到,获得积分10
8秒前
9秒前
暖羊羊Y完成签到 ,获得积分10
12秒前
木目完成签到,获得积分10
15秒前
鲤鱼白玉完成签到,获得积分10
16秒前
欣喜念梦完成签到,获得积分10
17秒前
gaoyayaaa完成签到,获得积分10
17秒前
高高的魔镜应助彼得大帝采纳,获得10
17秒前
了0完成签到 ,获得积分10
18秒前
whatever应助科研不是科幻采纳,获得20
20秒前
Singularity应助有姝采纳,获得10
27秒前
周舟完成签到 ,获得积分10
29秒前
Hi完成签到 ,获得积分10
33秒前
能力越小责任越小完成签到,获得积分10
36秒前
有姝完成签到,获得积分10
37秒前
38秒前
mzm发布了新的文献求助10
41秒前
知行合一完成签到 ,获得积分10
43秒前
善学以致用应助mzm采纳,获得10
47秒前
大地上的鱼完成签到,获得积分10
48秒前
残幻应助卓梨采纳,获得10
49秒前
Hollen完成签到 ,获得积分10
49秒前
卓梨完成签到,获得积分10
55秒前
Ava应助prim采纳,获得10
55秒前
hkh完成签到,获得积分10
56秒前
keyaner完成签到,获得积分10
57秒前
Z_BOY完成签到 ,获得积分10
58秒前
prim给prim的求助进行了留言
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776097
求助须知:如何正确求助?哪些是违规求助? 3321698
关于积分的说明 10206667
捐赠科研通 3036787
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841