Future of Ultrasonic Transducers: How Machine Learning Is Driving Innovation

传感器 超声波传感器 人工神经网络 磁致伸缩 计算机科学 层压 支持向量机 感知器 多层感知器 径向基函数 声学 材料科学 人工智能 物理 图层(电子) 量子力学 磁场 复合材料
作者
Danial Gandomzadeh,Abbas Rohani,Mohammad Hossein Abbaspour‐Fard
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (49): 21222-21236
标识
DOI:10.1021/acs.iecr.3c03109
摘要

Excellent capabilities for low-frequency devices are exhibited by magnetostrictive materials such as terfenol. However, their utilization in high-frequency ultrasonic transducers requires further advancements. In this study, a novel approach is introduced, utilizing experimental data to establish the relationship between the output amplitude of a magnetostrictive transducer and various design parameters. These parameters include frequency, current, core lamination thickness, core length, core diameter, and lengths of the primary and secondary horn steps. Several machine learning methods, including the radial basis function (RBF) neural network, support vector machine (SVM), multilayer perceptron neural network (MLP), and Gaussian process regression (GPR), were employed for analyzing the experimental data. The analysis revealed that the RBF model demonstrated the best predictive performance with an RMSE of 0.12. Through sensitivity analysis, the study identified frequency, current, the length of the secondary horn step, core lamination thickness, core length, core diameter, and length of the primary horn step as the most influential design parameters for optimizing the output amplitude of magnetostrictive ultrasonic transducers with a terfenol core. This study proposes the utilization of machine learning in the optimization of the magnetostrictive ultrasonic transducer design. It presents a novel method that integrates experimental data and machine learning techniques for design optimization. The findings emphasize the potential of machine learning in enhancing the efficiency and reliability of transducers for various applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
海心完成签到,获得积分10
2秒前
lvsehx发布了新的文献求助10
3秒前
3秒前
11完成签到,获得积分10
4秒前
4秒前
安详可燕完成签到,获得积分20
4秒前
5秒前
5秒前
wanci应助加以采纳,获得10
7秒前
李小晴天发布了新的文献求助10
7秒前
7秒前
8秒前
你好发布了新的文献求助30
8秒前
8秒前
虚怀若谷完成签到 ,获得积分10
8秒前
独特的绯发布了新的文献求助10
9秒前
WN发布了新的文献求助10
9秒前
9秒前
RBT发布了新的文献求助10
11秒前
wanci应助ncjdoi采纳,获得10
11秒前
深情安青应助玫玫采纳,获得10
11秒前
11秒前
Jasper应助Karol采纳,获得10
11秒前
Owen应助Wuyuanyuan采纳,获得30
11秒前
情怀应助lvsehx采纳,获得10
11秒前
Janmy发布了新的文献求助10
11秒前
脑洞疼应助善良的英姑采纳,获得10
14秒前
14秒前
CipherSage应助weixi4457采纳,获得10
15秒前
是晓宇啊发布了新的文献求助10
15秒前
16秒前
写论文完成签到,获得积分10
16秒前
酷波er应助zxd采纳,获得10
16秒前
科研通AI6应助在我梦里绕采纳,获得10
16秒前
16秒前
17秒前
18秒前
大个应助李小晴天采纳,获得10
18秒前
贪玩的野狼完成签到 ,获得积分10
19秒前
qq158014169发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497419
求助须知:如何正确求助?哪些是违规求助? 4594913
关于积分的说明 14447079
捐赠科研通 4527566
什么是DOI,文献DOI怎么找? 2480940
邀请新用户注册赠送积分活动 1465311
关于科研通互助平台的介绍 1437920