Identification of characteristic genes and herbal compounds for the treatment of psoriasis based on machine learning and molecular dynamics simulation

分子动力学 银屑病 虚拟筛选 计算生物学 化学 阿魏酸 基因 生物信息学 生物 计算化学 医学 生物化学 皮肤病科
作者
Wenchao Dan,Shuying Lv,Wenya Gao,X C Liao,Zixuan Wang,Guangzhong Zhang
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-20 被引量:2
标识
DOI:10.1080/07391102.2024.2314752
摘要

Psoriasis brings economic and mental burdens to patients, the exact etiology and pathogenesis of psoriasis are still unclear. Compounds of herbal medicine have the potential for psoriasis treatment. This study aims to explore the characteristic genes for psoriasis, which herbal compounds may target. Four differential gene expression datasets, with 181 healthy skin and 181 psoriasis skin lesion samples, were used for analysis. This study employed random forest, neural network, and support vector machine algorithms to identify the characteristic genes associated with psoriasis. The identified genes were validated using external datasets. Then, the main compounds were identified. The targets of compounds were collected through SwissTargetPrediction, Super-PRED, HERB databases, and so on. Finally, a batch virtual screening of compounds with the identified characteristic genes was conducted. Open Babel and AutoDock Tools 1.5.6 were used for molecular docking, and Desmond was used to evaluate molecular dynamics simulations. Twelve characteristic genes, successfully validated in external datasets genes, were identified from 1270 differential genes. The 59 compounds identified contained 1795 targets. There are 143 intersections between differential genes and compound targets. Two-hundred and ninety-four compound-target combinations were selected for molecular docking screening. It was finally found that 8 protein-ligand combinations are highly critical for treating psoriasis, namely AKR1B10-Astilbin, AKR1B10-Ferulic acid, AKR1B10-Cianidanol, IL36G-Astilbin, MMP9-Ferulic acid, OASL-Astilbin, PPARG-Astilbin, SERPINB3-Astilbin, molecular dynamics simulations also indicate that these eight pairs of combinations are stable. This research brings a new perspective to the treatment of psoriasis, these characteristic genes and compounds deserve the attention of clinical researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinyu发布了新的文献求助10
1秒前
无限妙梦发布了新的文献求助10
5秒前
6秒前
7秒前
10秒前
11秒前
Meya发布了新的文献求助10
14秒前
北风应助栎木枝采纳,获得10
14秒前
耶耶耶耶宝完成签到,获得积分10
15秒前
温良恭俭让完成签到,获得积分10
15秒前
16秒前
张星宇完成签到,获得积分10
16秒前
美丽完成签到 ,获得积分10
16秒前
Maeth发布了新的文献求助10
19秒前
小九发布了新的文献求助30
20秒前
科研通AI2S应助瓜瓜采纳,获得10
22秒前
Tayzon完成签到,获得积分10
24秒前
深情安青应助帝国之刃采纳,获得10
25秒前
25秒前
清宁亦无拘完成签到 ,获得积分10
28秒前
DQ1175发布了新的文献求助10
29秒前
30秒前
30秒前
大饼你咋变扁了完成签到,获得积分10
30秒前
2393843435完成签到,获得积分20
34秒前
大个应助duoduo采纳,获得10
35秒前
Mm完成签到,获得积分10
37秒前
38秒前
2393843435发布了新的文献求助10
38秒前
40秒前
鱼了个鱼完成签到,获得积分10
42秒前
lplmid发布了新的文献求助30
43秒前
44秒前
赘婿应助牙线棒棒哒采纳,获得10
44秒前
45秒前
46秒前
48秒前
科研通AI5应助lplmid采纳,获得30
48秒前
Zed plus发布了新的文献求助200
49秒前
duoduo发布了新的文献求助10
50秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803788
求助须知:如何正确求助?哪些是违规求助? 3348592
关于积分的说明 10339483
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682762
邀请新用户注册赠送积分活动 808409
科研通“疑难数据库(出版商)”最低求助积分说明 764096