Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment

粒子群优化 背景(考古学) 光催化 降级(电信) 光降解 支持向量机 遗传算法 生物系统 人工神经网络 计算机科学 废水 材料科学 人工智能 环境科学 机器学习 环境工程 化学 催化作用 古生物学 电信 生物化学 生物
作者
Iman Salahshoori,Majid Namayandeh Jorabchi,Alireza Baghban,Hossein Ali Khonakdar
出处
期刊:Chemosphere [Elsevier BV]
卷期号:350: 141010-141010 被引量:28
标识
DOI:10.1016/j.chemosphere.2023.141010
摘要

This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs. Sensitivity analysis revealed that the illumination duration is the primary influencer of TC photodegradation with MOF photocatalysts, while the MOFs' surface area is the second crucial parameter shaping the efficiency and dynamics of the TC-MOF photocatalytic system. The developed LSSVM models display impressive predictive capabilities, effectively forecasting the experimental degradation of TC with high accuracy. Among these models, the GAPSO-LSSVM model excels as the top performer, achieving notable evaluation metrics, including STD, RMSE, MSE, MRE, and R2 at values of 3.09, 3.42, 11.71, 5.95, and 0.986, respectively. In comparison, the PSO-LSSVM, ICA-LSSVM, and GA-LSSVM models yield mean relative errors of 6.18%, 7.57%, and 11.37%, respectively. These outcomes highlight the exceptional predictive capabilities of the GAPSO-LSSVM model, solidifying its position as the most accurate and dependable model for predicting TC photodegradation in this study. This study contributes to advancing photocatalytic research and effectively reinforces the importance of leveraging machine learning methodologies for tackling environmental challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助SCI采纳,获得10
刚刚
1秒前
1秒前
xdc发布了新的文献求助10
1秒前
ecnu搬砖人发布了新的文献求助10
1秒前
2秒前
miaolingcool发布了新的文献求助10
2秒前
小甜完成签到,获得积分10
2秒前
去玩儿发布了新的文献求助10
3秒前
manny完成签到,获得积分10
5秒前
zhaoyaoshi发布了新的文献求助10
5秒前
wst1988发布了新的文献求助10
6秒前
6秒前
wanci应助Mr_龙在天涯采纳,获得10
6秒前
脑洞疼应助fate采纳,获得10
7秒前
8秒前
8秒前
简单的笑蓝完成签到,获得积分10
9秒前
9秒前
去玩儿完成签到,获得积分20
10秒前
在水一方应助小冰棍采纳,获得10
10秒前
腼腆的斓完成签到,获得积分10
10秒前
hly发布了新的文献求助60
11秒前
zyyyyyyyyyyy完成签到,获得积分10
12秒前
上官若男应助fanfan采纳,获得10
12秒前
12秒前
雪山飞龙发布了新的文献求助10
13秒前
细腻的芷文完成签到,获得积分20
13秒前
腼腆的斓发布了新的文献求助10
13秒前
大模型应助JankinWen采纳,获得10
15秒前
15秒前
可爱的函函应助xdc采纳,获得10
16秒前
安琦发布了新的文献求助10
17秒前
段段砖应助郭德久采纳,获得10
19秒前
20秒前
科目三应助bean采纳,获得10
20秒前
化身孤岛的鲸完成签到 ,获得积分10
20秒前
22秒前
22秒前
23秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831823
求助须知:如何正确求助?哪些是违规求助? 3373968
关于积分的说明 10482855
捐赠科研通 3093910
什么是DOI,文献DOI怎么找? 1703173
邀请新用户注册赠送积分活动 819298
科研通“疑难数据库(出版商)”最低求助积分说明 771414