清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Derivation and Validation of Clinical Phenotypes of the Cardiopulmonary Bypass–Induced Inflammatory Response

医学 围手术期 体外循环 队列 内科学 生物标志物 临床试验 重症监护医学 心脏病学 急诊医学 外科 生物化学 化学
作者
Adam J. Milam,Liang Chen,Junhui Mi,Edward J. Mascha,Sven Halvorson,Manshu Yan,Edward G. Soltesz,Andra E. Duncan
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
被引量:5
标识
DOI:10.1213/ane.0000000000006247
摘要

BACKGROUND: Precision medicine aims to change treatment from a “one-size-fits-all ” approach to customized therapies based on the individual patient. Applying a precision medicine approach to a heterogeneous condition, such as the cardiopulmonary bypass (CPB)–induced inflammatory response, first requires identification of homogeneous subgroups that correlate with biological markers and postoperative outcomes. As a first step, we derived clinical phenotypes of the CPB-induced inflammatory response by identifying patterns in perioperative clinical variables using machine learning and simulation tools. We then evaluated whether these phenotypes were associated with biological response variables and clinical outcomes. METHODS: This single-center, retrospective cohort study used Cleveland Clinic registry data from patients undergoing cardiac surgery with CPB from January 2010 to March 2020. Biomarker data from a subgroup of patients enrolled in a clinical trial were also included. Patients undergoing emergent surgery, off-pump surgery, transplantation, descending thoracoabdominal aortic surgery, and planned ventricular assist device placement were excluded. Preoperative and intraoperative variables of patient baseline characteristics (demographics, comorbidities, and laboratory data) and perioperative data (procedural data, CPB duration, and hemodynamics) were analyzed to derive clinical phenotypes using K-means–based consensus clustering analysis. Proportion of ambiguously clustered was used to assess cluster size and optimal cluster numbers. After clusters were formed, we summarized perioperative profiles, inflammatory biomarkers (eg, interleukin [IL]-6 and IL-8), kidney biomarkers (eg, urine neutrophil gelatinase–associated lipocalin [NGAL] and IL-18), and clinical outcomes (eg, mortality and hospital length of stay). Pairwise standardized difference was reported for all summarized variables. RESULTS: Of 36,865 eligible cardiac surgery cases, 25,613 met inclusion criteria. Cluster analysis derived 3 clinical phenotypes: α, β, and γ. Phenotype α (n = 6157 [24%]) included older patients with more comorbidities, including heart and kidney failure. Phenotype β (n = 10,572 [41%]) patients were younger and mostly male. Phenotype γ (n = 8884 [35%]) patients were 58% female and had lower body mass index (BMI). Phenotype α patients had worse outcomes, including longer hospital length of stay (mean = 9 days for α versus 6 for both β [absolute standardized difference {ASD} = 1.15] and γ [ASD = 1.08]), more kidney failure, and higher mortality. Inflammatory biomarkers (IL-6 and IL-8) and kidney injury biomarkers (urine NGAL and IL-18) were higher with the α phenotype compared to β and γ immediately after surgery. CONCLUSIONS: Deriving clinical phenotypes that correlate with response biomarkers and outcomes represents an initial step toward a precision medicine approach for the management of CPB-induced inflammatory response and lays the groundwork for future investigation, including an evaluation of the heterogeneity of treatment effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
不信人间有白头完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
gszy1975发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
星纪完成签到 ,获得积分10
3分钟前
zhangjianzeng完成签到 ,获得积分10
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
lorentzh完成签到,获得积分10
5分钟前
5分钟前
Fu发布了新的文献求助10
5分钟前
彭于晏应助zlh采纳,获得10
6分钟前
6分钟前
zlh发布了新的文献求助10
6分钟前
传奇3应助纯白采纳,获得10
6分钟前
6分钟前
纯白发布了新的文献求助10
6分钟前
Ashao完成签到 ,获得积分10
6分钟前
沉静亦寒完成签到 ,获得积分10
7分钟前
季兆欣完成签到,获得积分10
7分钟前
云墨完成签到 ,获得积分10
7分钟前
深情安青应助科研通管家采纳,获得10
8分钟前
冰凌心恋完成签到,获得积分10
8分钟前
今后应助zlh采纳,获得10
9分钟前
Dreamhappy完成签到,获得积分10
9分钟前
两个榴莲完成签到,获得积分0
9分钟前
9分钟前
zlh发布了新的文献求助10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
gyx完成签到 ,获得积分10
10分钟前
科研通AI2S应助zlh采纳,获得10
11分钟前
11分钟前
zlh发布了新的文献求助10
11分钟前
11分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695514
求助须知:如何正确求助?哪些是违规求助? 4065442
关于积分的说明 12569091
捐赠科研通 3764612
什么是DOI,文献DOI怎么找? 2079097
邀请新用户注册赠送积分活动 1107368
科研通“疑难数据库(出版商)”最低求助积分说明 985685