Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

医学 组内相关 磁共振成像 冲程(发动机) 核医学 放射科 心理测量学 机械工程 临床心理学 工程类
作者
Yasheng Chen,Wang Yan,Chia-Ling Phuah,Melanie E. Fields,Kristin P. Guilliams,Slim Fellah,Martin Reis,Michael M. Binkley,Hongyu An,Lee J,Robert C. McKinstry,Lori C. Jordan,Michael R. DeBaun,Andria L. Ford
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (8): 2096-2104
标识
DOI:10.1161/strokeaha.123.042683
摘要

Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation.The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations.UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的海豚完成签到,获得积分10
1秒前
一个爱打乒乓球的彪完成签到 ,获得积分10
3秒前
6秒前
Singularity完成签到,获得积分0
6秒前
Akashi发布了新的文献求助200
11秒前
Claudplz完成签到,获得积分10
15秒前
家的温暖完成签到,获得积分10
19秒前
Arctic完成签到 ,获得积分10
22秒前
23秒前
fml完成签到,获得积分10
24秒前
呆萌冰彤完成签到 ,获得积分10
32秒前
loren313完成签到,获得积分0
45秒前
吴旭东完成签到,获得积分10
50秒前
无情的水香完成签到 ,获得积分10
51秒前
千玺的小粉丝儿完成签到,获得积分10
52秒前
宁静致远QY完成签到,获得积分10
58秒前
绝活中投完成签到 ,获得积分10
59秒前
xiaoyi完成签到 ,获得积分10
1分钟前
美少叔叔完成签到 ,获得积分10
1分钟前
自然的含蕾完成签到 ,获得积分10
1分钟前
楚楚完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
liukanhai应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得150
1分钟前
1分钟前
xdd完成签到 ,获得积分10
1分钟前
夜雨完成签到 ,获得积分10
1分钟前
我不到啊完成签到 ,获得积分10
1分钟前
myq完成签到 ,获得积分10
1分钟前
kyt_vip完成签到,获得积分10
1分钟前
1分钟前
SUNNYONE完成签到 ,获得积分10
1分钟前
Bella完成签到 ,获得积分10
2分钟前
烟雨江南完成签到,获得积分10
2分钟前
然大宝完成签到,获得积分10
2分钟前
烟花应助风清扬采纳,获得10
2分钟前
共享精神应助404NotFOUND采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303942
求助须知:如何正确求助?哪些是违规求助? 4450590
关于积分的说明 13849500
捐赠科研通 4337409
什么是DOI,文献DOI怎么找? 2381437
邀请新用户注册赠送积分活动 1376451
关于科研通互助平台的介绍 1343296