Multi-objective optimization and decision making for integrated energy system using STA and fuzzy TOPSIS

托普西斯 数学优化 理想溶液 加权 多目标优化 计算机科学 多准则决策分析 帕累托原理 排名(信息检索) 模糊逻辑 熵(时间箭头) 能源规划 运筹学 数学 人工智能 可再生能源 工程类 热力学 电气工程 物理 医学 放射科 量子力学
作者
Xiaojun Zhou,Tan Wan,Yan Sun,Tingwen Huang,Chunhua Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122539-122539 被引量:45
标识
DOI:10.1016/j.eswa.2023.122539
摘要

Integrated energy system (IES) plays a vital role in achieving energy revolution and the goals of carbon peak and carbon neutrality. The optimal planning of IES is of great significance for improving the overall efficiency of the system and promoting its sustainable development. Focusing on this issue, this paper proposes a planning framework integrating multi-objective optimization with fuzzy multi-criteria decision making (MCDM). In this framework, IES planning is modeled as a multi-objective optimization problem that, for the first time, simultaneously minimizes energy consumption, carbon emissions, and economic costs. Thereafter, the optimization problem is solved by a multi-objective state transition algorithm based on decomposition (MOSTA/D), which generates a Pareto set that realizes multiple conflicting objective tradeoffs. Furthermore, to comprehensively evaluate the Pareto optimal solutions, an evaluation criteria system is established from various perspectives, and a novel MCDM approach is proposed. This approach combines the analytic network process-entropy weighting technique, which takes into account the correlation between criteria as well as subjective preference and objective information, with fuzzy TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) for scientifically ranking and selecting solutions under uncertainty. The simulation results of an IES planning case study demonstrate that the optimal scheme determined by the proposed method achieves the best overall benefit for IES, with significant annual economic cost savings, primary energy savings, and carbon dioxide emission reduction rates of 2.27%, 40.36%, and 56.25%, respectively, proving the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhq完成签到 ,获得积分10
1秒前
2秒前
星期八完成签到,获得积分10
2秒前
虚幻盼晴完成签到,获得积分10
2秒前
Linda完成签到 ,获得积分10
3秒前
3秒前
3秒前
weiwei发布了新的文献求助10
4秒前
幸福的梦寒完成签到 ,获得积分10
4秒前
萤火虫发布了新的文献求助10
5秒前
5秒前
5秒前
专注的老太完成签到,获得积分10
6秒前
Lin_sandwich发布了新的文献求助10
6秒前
6秒前
y9gyn_37发布了新的文献求助10
6秒前
7秒前
Linda关注了科研通微信公众号
7秒前
科研通AI5应助十八采纳,获得30
8秒前
8秒前
9秒前
dr_luo完成签到,获得积分10
9秒前
10秒前
小蘑菇应助正常采纳,获得10
10秒前
何rj发布了新的文献求助10
12秒前
Koalas应助思大锤采纳,获得20
13秒前
充电宝应助ceeray23采纳,获得20
13秒前
清爽老九应助ly普鲁卡因采纳,获得30
13秒前
彧九完成签到 ,获得积分10
13秒前
饼饼发布了新的文献求助10
13秒前
14秒前
善学以致用应助adearfish采纳,获得10
14秒前
wjwqz完成签到,获得积分10
14秒前
15秒前
帅气青梦发布了新的文献求助20
15秒前
清爽老九应助Lin_sandwich采纳,获得30
15秒前
领导范儿应助Lin_sandwich采纳,获得30
15秒前
Lucas应助酷炫的铸海采纳,获得10
16秒前
勤奋的盼山完成签到 ,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196