Multiscale Residual Antinoise Network via Interpretable Dynamic Recalibration Mechanism for Rolling Bearing Fault Diagnosis With Few Samples

残余物 计算机科学 特征提取 可解释性 人工智能 模式识别(心理学) 方位(导航) 断层(地质) 特征(语言学) 卷积(计算机科学) 人工神经网络 算法 语言学 哲学 地震学 地质学
作者
Bin Liu,Changfeng Yan,Yaofeng Liu,Zonggang Wang,Y. Huang,Lixiao Wu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (24): 31425-31439 被引量:7
标识
DOI:10.1109/jsen.2023.3328007
摘要

Deep learning (DL)-based rolling bearing fault diagnosis method has made significant achievements, but its diagnostic performance is still limited by few samples. Aiming at this problem, a novel intelligent fault diagnosis (IFD) method for rolling bearings, named multiscale residual antinoise network (MRANet) via interpretable dynamic recalibration mechanism (DRM), is proposed. First, the raw vibration signal is generated into a time–frequency diagram with more characteristic domains by short-time Fourier transform (STFT). Then, the shallow mechanism and deep discriminable features are extracted using multibranch dilated convolution and improved residual blocks. Simultaneously, the DRM assists the feature extractor to adaptively adjust the feature weights from the spatial position and the channel information ratio to enhance the local impulse excitation. Furthermore, the corrective effect of DRM on the feature extractor is visualized, which improves the interpretability of the network. Comparative experiments are conducted with other popular IFD methods on public and Lanzhou University of Technology (LUT) bearing dataset, and the results show that MRANet can exhibit superior diagnostic performance with few samples under variable load and multispeed conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
orixero应助科研通管家采纳,获得50
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
realssr应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
淡定诗柳完成签到,获得积分10
3秒前
干净寄文发布了新的文献求助10
6秒前
肖恩发布了新的文献求助10
6秒前
10秒前
11秒前
CMUSK完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
深夜诗人完成签到 ,获得积分10
16秒前
干净寄文完成签到,获得积分10
19秒前
wangfang发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
潘善若发布了新的文献求助10
21秒前
圈圈黄完成签到,获得积分10
22秒前
埃勒娃应助12采纳,获得10
23秒前
兴奋的若菱完成签到 ,获得积分10
24秒前
25秒前
小李老博应助莫华龙采纳,获得10
25秒前
26秒前
郝绝山发布了新的文献求助10
26秒前
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642