DIAGNOSIS OF KIDNEY CYST, TUMOR AND STONE FROM CT SCAN IMAGESUSING FEATURE FUSION HYPERGRAPH CONVOLUTIONAL NEURAL NETWORK (F2HCN2)

人工智能 卷积神经网络 计算机科学 模式识别(心理学) Softmax函数 判别式
作者
N. Sasikaladevi,S. Pradeepa,A. Revathi,S. Vimal,Rubén González Crespo
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House Inc.]
卷期号:22 (5): 35-46 被引量:3
标识
DOI:10.1615/intjmultcompeng.2023048245
摘要

The development of a computational tool to diagnose kidney disorders in their early stages is necessary due to the rise in chronic kidney diseases (CKDs) and the global shortage of nephrologists. The three common renal disorders covered in this study are kidney stones, cysts, and tumors. Early diagnosis of these diseases from the computed tomography (CT) images is a challenging task. Yet, present graph convolutional neural network (GCNN) approaches have the issue of overdependence on the adjacency matrix. Moreover, compared to deep convolutional neural network (CNN) models, a single modal feature results in low accuracy and robustness. In this paper, we proposed the feature fusion hypergraph CNN (F<sup>2</sup>HCN<sup>2</sup>) to accurately diagnose kidney diseases in the early stage based on CT scan images. The discriminative features of the images are extracted using DarkNet19 and residual features are extracted using ResNet50. The extracted features are classified using feature fusion hypergraph CNN. The proposed model is trained with 12,446 CT whole urogram and abdomen images. The hypergraph representation learning is performed to train the network with the fused features. Deep learning metrics including accuracy, F1 score (F1), recall, positive predictive value (PPV), receiver operating characteristic curve, and area under curve (AUC) are used to validate the proposed model. It outperforms compared to other state-of-the-art algorithms with accuracy of 99.71&#37;. The proposed F<sup>2</sup>HCN<sup>2</sup> is a robust computer-aided tool for the early diagnosis of kidney diseases. It will assist the radiologist for better prognosis for kidney related abnormalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
包容的若风完成签到 ,获得积分10
10秒前
唐新惠完成签到 ,获得积分10
11秒前
哈基米完成签到 ,获得积分20
16秒前
Owen应助Tang采纳,获得10
17秒前
19秒前
Sunflower完成签到 ,获得积分10
22秒前
舒适涵山完成签到,获得积分10
23秒前
难过的溪流完成签到 ,获得积分10
26秒前
笑林完成签到 ,获得积分10
33秒前
傻瓜完成签到 ,获得积分10
42秒前
hwa完成签到,获得积分10
43秒前
darcy完成签到,获得积分10
47秒前
震动的鹏飞完成签到 ,获得积分10
48秒前
apk866完成签到 ,获得积分10
51秒前
活力书包完成签到 ,获得积分10
54秒前
fomo完成签到,获得积分10
56秒前
淡然的胡萝卜完成签到 ,获得积分10
1分钟前
爱沉淀的太阳花完成签到,获得积分10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
马成双完成签到 ,获得积分10
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
游01完成签到 ,获得积分10
1分钟前
menghongmei完成签到 ,获得积分10
1分钟前
争当科研巨匠完成签到,获得积分10
1分钟前
步步高完成签到,获得积分10
1分钟前
甜甜凉面完成签到,获得积分10
1分钟前
冷HorToo完成签到 ,获得积分10
1分钟前
ufofly730完成签到 ,获得积分10
1分钟前
顺利哑铃完成签到 ,获得积分10
1分钟前
Jeffery426完成签到,获得积分10
1分钟前
YingyingFan完成签到,获得积分10
1分钟前
西宁完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561730
求助须知:如何正确求助?哪些是违规求助? 4646763
关于积分的说明 14678983
捐赠科研通 4588208
什么是DOI,文献DOI怎么找? 2517396
邀请新用户注册赠送积分活动 1490657
关于科研通互助平台的介绍 1461765