Online monitoring of local defects in robotic laser additive manufacturing process based on a dynamic mapping strategy and multibranch fusion convolutional neural network

保险丝(电气) 卷积神经网络 过程(计算) 计算机科学 人工智能 融合 融合机制 图层(电子) 特征(语言学) 特征提取 滑动窗口协议 激光器 模式识别(心理学) 人工神经网络 计算机视觉 工程类 材料科学 窗口(计算) 光学 哲学 物理 复合材料 语言学 电气工程 操作系统 脂质双层融合
作者
Ming Yin,Shiming Zhuo,Luofeng Xie,Longqing Chen,Min Wang,Guangzhi Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:71: 494-503 被引量:11
标识
DOI:10.1016/j.jmsy.2023.10.005
摘要

Online monitoring is essential for laser additive manufacturing (AM) to improve in-process quality control. Currently, accurate monitoring of local defects in the laser AM process remains a challenge. This paper proposes a method for predicting local defects in the laser AM process based on a dynamic mapping strategy and the multibranch fusion convolutional neural network (MBFCNN). In-situ sensing of the laser-material interaction zone is achieved using a camera integrated coaxially with the printing system. Experiment-based datasets are constructed, in which the in-process images were sampled and matched to the extracted local defect information based on their temporal-spatial correspondence. A dynamic mapping strategy using a sliding sampling window is introduced to achieve continuous monitoring. Considering the cyclic and layer-by-layer processing principle of laser AM, we propose MBFCNN to map the in-process images to local defect information. A multibranch feature extraction module is designed based on the deposited layers of the target region to be monitored, in which each branch extracts high-dimensional representations from in-process images corresponding to a certain layer. We further introduce an attention mechanism to distinguish the importance of each branch and a feature fusion module to fuse the high-level information. Experimental results and comparison with traditional convolutional neural networks demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kunkun完成签到,获得积分10
2秒前
2秒前
3秒前
李健应助17712570999采纳,获得10
3秒前
4秒前
滴滴发布了新的文献求助10
4秒前
pengyufen发布了新的文献求助10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
5秒前
优雅依玉完成签到,获得积分10
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
陈老派发布了新的文献求助10
8秒前
8秒前
yourself发布了新的文献求助10
8秒前
哭泣嵩发布了新的文献求助10
9秒前
FashionBoy应助王立志采纳,获得10
11秒前
SYLH应助等等采纳,获得10
13秒前
13秒前
13秒前
14秒前
猪哥哥应助太叔友蕊采纳,获得10
17秒前
20秒前
22秒前
滴滴完成签到,获得积分10
22秒前
25秒前
筱筱完成签到 ,获得积分10
26秒前
xiaoman完成签到,获得积分10
26秒前
lalala发布了新的文献求助10
27秒前
大个应助narssu采纳,获得10
28秒前
28秒前
zjh发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933582
求助须知:如何正确求助?哪些是违规求助? 3478705
关于积分的说明 11002632
捐赠科研通 3208766
什么是DOI,文献DOI怎么找? 1773247
邀请新用户注册赠送积分活动 860244
科研通“疑难数据库(出版商)”最低求助积分说明 797626