Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning

环境科学 生长季节 作物产量 气候变化 产量(工程) 贝叶斯概率 作物模拟模型 气候学 气象学 数学 统计 农学 地理 生态学 材料科学 冶金 生物 地质学
作者
Jianzheng Li,Ganqiong Li,Ligang Wang,Denghua Li,Hu Li,Chao Gao,Minghao Zhuang,Zhuang Jiayu,Han Zhou,Shiwei Xu,Zhengjiang Hu,Enli Wang
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109102-109102 被引量:10
标识
DOI:10.1016/j.fcr.2023.109102
摘要

China produces more than 20 % of maize grain in the world, and Northeast China (NEC) accounts for ∼30 % of the nation's total maize production. Previous studies have used either climate data, satellite data, or crop growth model (CGM) to predict or forecast maize yield. However, maize is highly susceptible to the effect of extreme climate events (such as drought, heat) in NEC, and there is a lack of studies to predict/forecast maize yield by integrating climate data, satellite data, extreme climate events, and CGM-simulated data. We aim to develop a hybrid approach with machine learning to blend different sources of data (climate data, satellite data, extreme climate events) and process-based modelling results to improve predictive accuracy of maize yield in NEC. Using maize data from 44 sites during the period of 2000–2013 in NEC, we firstly optimized Agricultural Production System sIMulator (APSIM) using Differential Evolution Adaptive Metropolis combined with Gaussian likelihood function and Bayesian multiplication method. Next, we divided the growing season into five phases, and selected variables of different phases using exploratory data analysis and Random Forest. Then, we developed a hybrid model using Random Forest by blending of multiple sources of data and APSIM simulations to predict maize yield from the start to the end of the growing season, and quantified the relative contribution of predictors. A hybrid model developed with random forest by combining climate data, NDVI, extreme climate events and APSIM simulations can achieve high performance for predicting yield toward the end of the growing season. The accuracy of in-season yield prediction showed a linear increase with MAPE/KGE changing from 19 %/0.05 to 13 %/0.53 from start to end of the growing season. Yield forecasts are acceptable with RMSE/MAE of 1.20/1.01 Mg ha−1 (16 %/13 % of the observed mean yield) approximately one-month prior to harvest. The most important predictor that affect yield forecast was APSIM-simulated biomass or yield, and the most important extreme climate event was drought during early grain-filling stage. With the increasing availability of crop-related data, we expect that the in-season forecasting capacity of the proposed methodology could be further improved, and the methodology can be extended to other crops and other regions for yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
淡定的半梦完成签到,获得积分10
1秒前
刘宏完成签到,获得积分10
2秒前
阔达萤发布了新的文献求助10
4秒前
根本不必关注了科研通微信公众号
5秒前
5秒前
祝英台完成签到,获得积分10
6秒前
东东发布了新的文献求助10
6秒前
凝心完成签到,获得积分10
7秒前
浮游应助汤哈哈哈哈采纳,获得10
7秒前
9秒前
11秒前
情怀应助鳗鱼灰狼采纳,获得10
11秒前
小阳完成签到 ,获得积分10
11秒前
xiaokaixin完成签到,获得积分10
11秒前
镓氧锌钇铀应助阿玺采纳,获得10
11秒前
12秒前
12秒前
yaolei完成签到,获得积分0
12秒前
岁岁完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
在水一方应助茶辞采纳,获得10
15秒前
李帅完成签到 ,获得积分10
15秒前
16秒前
Eurus发布了新的文献求助10
16秒前
why驳回了ding应助
16秒前
少年发布了新的文献求助10
17秒前
llb完成签到,获得积分20
17秒前
18秒前
镓氧锌钇铀应助gxudmy采纳,获得10
19秒前
华仔应助han11采纳,获得10
20秒前
20秒前
ding应助菜了采纳,获得10
20秒前
hai发布了新的文献求助10
22秒前
23秒前
浑灵安发布了新的文献求助10
23秒前
皮划艇完成签到,获得积分20
23秒前
lilycat完成签到,获得积分10
23秒前
赘婿应助火星上亦绿采纳,获得10
24秒前
柒柒完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492616
求助须知:如何正确求助?哪些是违规求助? 4590625
关于积分的说明 14431427
捐赠科研通 4523120
什么是DOI,文献DOI怎么找? 2478183
邀请新用户注册赠送积分活动 1463195
关于科研通互助平台的介绍 1435909