Enhancing Dynamic On-demand Food Order Dispatching via Future-informed and Spatial-temporal Extended Decisions

计算机科学 运筹学 订单(交换) 随机优化 力矩(物理) 数学优化 工程类 经济 财务 数学 经典力学 物理
作者
Y. Liang,Donghui Li,Jiuxia Zhao,Xuetao Ding,Huanjia Lian,Jinghua Hao,Renqing He
标识
DOI:10.1145/3583780.3615473
摘要

On-demand food delivery (OFD) service has gained fast-growing popularity all around the world. Order dispatching is instrumental to large-scale OFD platforms, such as Meituan, which continuously match food order requests to couriers at a scale of tens of millions each day to satisfy the needs of consumers, couriers, and merchants. However, due to high dynamism and inevitable uncertainties in the real-world environment, it is not an easy task to achieve long-term global objective optimization through continuous isolated optimization decisions at each dispatch moment. Our work proposes the concept of "courier occupancy" (CO) to precisely quantify the impact of order assignment on the courier's delivery efficiency, realizing a decomposition of long-term and macro goals into various dispatch moments and micro decision-making dimensions. Then in the prediction phase, an improved and universally applicable distribution estimation method is designed to quantify CO which is a stochastic variable and contains future information, combining Monte Carlo dropout and knowledge distillation. In the optimization phase, we use CO to model the objective function at each dispatch moment to introduce future information and extend dispatch decisions from merely who to assign the order to both when and who to assign it, significantly enhancing the long-term optimization capability of dispatching decisions and avoiding local greed. We conduct extensive offline simulations based on real dispatching data as well as online AB tests through Meituan's platform. Results show that our method consistently improves the couriers' delivery efficiency and consumers' satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Amorfati采纳,获得10
刚刚
阿尼拉姆完成签到,获得积分10
刚刚
任性迎南发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
上官若男应助涵泽采纳,获得10
4秒前
5秒前
6秒前
lery完成签到,获得积分10
6秒前
8秒前
无花果应助金梦丽采纳,获得10
9秒前
张银钊发布了新的文献求助10
9秒前
9秒前
YY发布了新的文献求助10
9秒前
唱唱哟完成签到 ,获得积分10
10秒前
TS3409发布了新的文献求助10
11秒前
默默雪旋完成签到 ,获得积分10
13秒前
15秒前
Amorfati发布了新的文献求助10
15秒前
wanci应助阿瓜采纳,获得10
16秒前
HHH应助lery采纳,获得10
16秒前
怡然的灵波完成签到,获得积分10
16秒前
火枪手发布了新的文献求助10
18秒前
随便起个名完成签到,获得积分10
19秒前
华仔应助zyc采纳,获得10
20秒前
20秒前
22秒前
22秒前
小二郎应助喜悦的乐天采纳,获得10
22秒前
清风徐来完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
kk发布了新的文献求助10
26秒前
26秒前
26秒前
小铭完成签到,获得积分10
27秒前
edddzzz发布了新的文献求助10
28秒前
卜懂得完成签到,获得积分10
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044327
求助须知:如何正确求助?哪些是违规求助? 3582166
关于积分的说明 11385522
捐赠科研通 3309211
什么是DOI,文献DOI怎么找? 1821425
邀请新用户注册赠送积分活动 893709
科研通“疑难数据库(出版商)”最低求助积分说明 815809