TLS-MHSA: An Efficient Detection Model for Encrypted Malicious Traffic based on Multi-Head Self-Attention Mechanism

计算机科学 加密 协议(科学) 钥匙(锁) 传输层安全 计算机安全 构造(python库) 超文本传输协议 光学(聚焦) 计算机网络 互联网 病理 万维网 物理 光学 替代医学 医学
作者
Jinfu Chen,Luo Song,Saihua Cai,Haodi Xie,Shang Yin,Bilal Ahmad
出处
期刊:ACM transactions on privacy and security [Association for Computing Machinery]
卷期号:26 (4): 1-21 被引量:10
标识
DOI:10.1145/3613960
摘要

In recent years, the use of TLS (Transport Layer Security) protocol to protect communication information has become increasingly popular as users are more aware of network security. However, hackers have also exploited the salient features of the TLS protocol to carry out covert malicious attacks, which threaten the security of network space. Currently, the commonly used traffic detection methods are not always reliable when applied to the problem of encrypted malicious traffic detection due to their limitations. The most significant problem is that these methods do not focus on the key features of encrypted traffic. To address this problem, this study proposes an efficient detection model for encrypted malicious traffic based on transport layer security protocol and a multi-head self-attention mechanism called TLS-MHSA. Firstly, we extract the features of TLS traffic during pre-processing and perform traffic statistics to filter redundant features. Then, we use a multi-head self-attention mechanism to focus on learning key features as well as generate the most important combined features to construct the detection model, thereby detecting the encrypted malicious traffic. Finally, we use a public dataset to verify the effectiveness and efficiency of the TLS-MHSA model, and the experimental results show that the proposed TLS-MHSA model has high precision, recall, F1-measure, AUC-ROC as well as higher stability than seven state-of-the-art detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qqqwqerf发布了新的文献求助30
1秒前
2秒前
要减肥半邪完成签到,获得积分10
2秒前
还是十六号完成签到,获得积分10
3秒前
江月林风发布了新的文献求助10
4秒前
木头完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
12秒前
gong完成签到,获得积分10
14秒前
大个应助拼搏向上采纳,获得10
16秒前
yexiao完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
13313完成签到,获得积分10
22秒前
HongqiZhang完成签到 ,获得积分0
24秒前
科目三应助尤玉采纳,获得10
26秒前
neurospine发布了新的文献求助10
27秒前
欣慰外套发布了新的文献求助10
28秒前
luojimao完成签到,获得积分10
28秒前
28秒前
29秒前
ang完成签到,获得积分10
30秒前
32秒前
qianqina完成签到,获得积分10
33秒前
大白小杨发布了新的文献求助10
34秒前
FoxLY发布了新的文献求助10
34秒前
研友_nvggxZ发布了新的文献求助10
36秒前
37秒前
丘比特应助Anonymous采纳,获得10
37秒前
Mark完成签到 ,获得积分10
37秒前
cocofan完成签到 ,获得积分10
39秒前
41秒前
KYT发布了新的文献求助10
41秒前
KinoFreeze完成签到 ,获得积分10
44秒前
多情尔蝶发布了新的文献求助10
44秒前
zz发布了新的文献求助10
45秒前
花无双完成签到,获得积分0
45秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517