Transformer-Empowered Invariant Grounding for Video Question Answering

虚假关系 答疑 计算机科学 变压器 不变(物理) 接地 人工智能 机器学习 利用 自然语言处理 数学 数学物理 计算机安全 量子力学 物理 电压
作者
Yicong Li,Xiang Wang,Junbin Xiao,Wei Ji,Tat‐Seng Chua
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:5
标识
DOI:10.1109/tpami.2023.3303451
摘要

Video Question Answering (VideoQA) is the task of answering questions about a video. At its core is the understanding of the alignments between video scenes and question semantics to yield the answer. In leading VideoQA models, the typical learning objective, empirical risk minimization (ERM), tends to over-exploit the spurious correlations between question-irrelevant scenes and answers, instead of inspecting the causal effect of question-critical scenes, which undermines the prediction with unreliable reasoning. In this work, we take a causal look at VideoQA and propose a modal-agnostic learning framework, named Invariant Grounding for VideoQA (IGV), to ground the question-critical scene, whose causal relations with answers are invariant across different interventions on the complement. With IGV, leading VideoQA models are forced to shield the answering from the negative influence of spurious correlations, which significantly improves their reasoning ability. To unleash the potential of this framework, we further provide a Transformer-Empowered Invariant Grounding for VideoQA (TIGV), a substantial instantiation of IGV framework that naturally integrates the idea of invariant grounding into a transformer-style backbone. Experiments on four benchmark datasets validate our design in terms of accuracy, visual explainability, and generalization ability over the leading baselines. Our code is available at https://github.com/yl3800/TIGV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助思017675采纳,获得10
1秒前
2秒前
微斯人完成签到,获得积分10
2秒前
张原宇发布了新的文献求助10
3秒前
Leucalypt发布了新的文献求助10
3秒前
Xiaoan发布了新的文献求助10
4秒前
开放的思菱完成签到,获得积分20
4秒前
小二发布了新的文献求助10
4秒前
linney0325发布了新的文献求助10
5秒前
6秒前
jianglili完成签到,获得积分10
6秒前
7秒前
xsf完成签到,获得积分10
7秒前
11完成签到,获得积分10
7秒前
8秒前
8秒前
mi完成签到 ,获得积分10
8秒前
嗨害害完成签到 ,获得积分10
9秒前
wylwyl完成签到,获得积分10
9秒前
南佳发布了新的文献求助10
9秒前
英俊的铭应助温暖芒果采纳,获得10
10秒前
Ava应助wangboxiong采纳,获得10
10秒前
11秒前
牛马发布了新的文献求助10
11秒前
shhoing应助小番茄采纳,获得10
12秒前
XS_QI发布了新的文献求助10
12秒前
13秒前
辛勤灯泡完成签到,获得积分10
13秒前
zz发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
如初完成签到,获得积分10
15秒前
15秒前
15秒前
bkagyin应助linney0325采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554292
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654380
捐赠科研通 4580589
什么是DOI,文献DOI怎么找? 2512383
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076