简单(哲学)
动态规划
可分离空间
阐述(叙述)
数学优化
计算机科学
国家(计算机科学)
订单(交换)
功能(生物学)
数学
数理经济学
算法
经济
认识论
哲学
文学类
数学分析
艺术
生物
进化生物学
财务
出处
期刊:Oxford University Press eBooks
[Oxford University Press]
日期:1990-07-12
卷期号:: 162-180
标识
DOI:10.1093/oso/9780198772101.003.0011
摘要
Abstract In Chapter 10 we studied optimization over time. The constraints (10.1) expressing increments to stocks or state variables, and the additively separable form (10.3) of the objective function, were special features that enabled us to express the first-order conditions in a useful special form, namely as the Maximum Principle. Dynamic Programming is an alternative way of solving the same problem. It proves especially useful when time and uncertainty appear together, as they so often do in reality. Let us begin with time to keep the exposition simple, and introduce uncertainty later. subject to the constraints
科研通智能强力驱动
Strongly Powered by AbleSci AI