Multilevel Federated Learning-Based Intelligent Traffic Flow Forecasting for Transportation Network Management

计算机科学 自编码 智能交通系统 数据挖掘 图形 深度学习 架空(工程) 人工智能 机器学习 数据建模 交通拥挤 理论计算机科学 数据库 操作系统 工程类 土木工程 运输工程
作者
Lei Liu,Yuxing Tian,Chinmay Chakraborty,Jie Feng,Qingqi Pei,Li Zhen,Keping Yu
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1446-1458 被引量:34
标识
DOI:10.1109/tnsm.2023.3280515
摘要

Accurate traffic flow forecasting is crucial to improving traffic safety and alleviating road congestion for intelligent transportation network management. Recently, spatial-temporal graph-based deep learning methods have achieving significant performance improvements in traffic flow forecasting. However, they only consider spatial-temporal correlation of traffic network but ignore a mass of semantic correlation. In addition, they need to centralize data for training models, leading to privacy leakage concern. To tackle these problems, we introduce a federated learning-based intelligent traffic flow forecasting model that integrates our proposed spatial-temporal graph-based deep learning model into the devised Multilevel Federated Learning framework(MFL), named MFVSTGNN. This MFL is used to allow data collaboration among different data owners to train an efficient model without sharing their private data, while achieving the trade-off between communication overhead and computation performance. The proposed spatial-temporal graph-based deep learning model is composed of two phases. The first phase utilizes Variational Graph Autoencoder (VGAE) to dynamically generate adjacency matrix that contains both the spatial and semantic dependencies, contributing to preserving valuable information for improving prediction accuracy, and the second phase employs general spatial-temporal graph neural network to conduct prediction. We evaluate the performance of MFVSTGNN with two large-scale traffic datasets from California and Los Angeles County. The experimental results demonstrate the superior performance of MFVSTGNN in reducing communication overhead, and improving prediction accuracy, validating the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdaDAS发布了新的文献求助10
刚刚
xcl完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
传奇3应助xiuxiu采纳,获得10
4秒前
LUK_发布了新的文献求助10
5秒前
干净芹菜完成签到,获得积分10
5秒前
精明世倌完成签到 ,获得积分10
6秒前
健壮慕梅发布了新的文献求助10
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
尉迟希望应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
BareBear应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
哈基米德应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助SuperBee采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
月上柳梢头完成签到,获得积分10
8秒前
Hh完成签到,获得积分20
10秒前
10秒前
aeolianbells完成签到 ,获得积分10
11秒前
12秒前
ieZH发布了新的文献求助10
13秒前
14秒前
Lina HE完成签到 ,获得积分10
15秒前
15秒前
Hh发布了新的文献求助10
15秒前
优雅冷菱发布了新的文献求助10
16秒前
16秒前
哇哇哇发布了新的文献求助10
17秒前
18秒前
科研通AI6应助明芬采纳,获得10
18秒前
唐唐完成签到,获得积分10
19秒前
Shuhe_Gong完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284540
求助须知:如何正确求助?哪些是违规求助? 4437980
关于积分的说明 13815642
捐赠科研通 4319001
什么是DOI,文献DOI怎么找? 2370833
邀请新用户注册赠送积分活动 1366166
关于科研通互助平台的介绍 1329639