Machine Learning in Laboratory Medicine: Recommendations of the IFCC Working Group

医学实验室 工作流程 最佳实践 计算机科学 质量(理念) 人工智能 工作(物理) 机器学习 医学 病理 工程类 机械工程 认识论 哲学 经济 数据库 管理
作者
Stephen R. Master,Tony Badrick,Andreas Bietenbeck,Shannon Haymond
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:69 (7): 690-698 被引量:10
标识
DOI:10.1093/clinchem/hvad055
摘要

Abstract Background Machine learning (ML) has been applied to an increasing number of predictive problems in laboratory medicine, and published work to date suggests that it has tremendous potential for clinical applications. However, a number of groups have noted the potential pitfalls associated with this work, particularly if certain details of the development and validation pipelines are not carefully controlled. Methods To address these pitfalls and other specific challenges when applying machine learning in a laboratory medicine setting, a working group of the International Federation for Clinical Chemistry and Laboratory Medicine was convened to provide a guidance document for this domain. Results This manuscript represents consensus recommendations for best practices from that committee, with the goal of improving the quality of developed and published ML models designed for use in clinical laboratories. Conclusions The committee believes that implementation of these best practices will improve the quality and reproducibility of machine learning utilized in laboratory medicine. Summary We have provided our consensus assessment of a number of important practices that are required to ensure that valid, reproducible machine learning (ML) models can be applied to address operational and diagnostic questions in the clinical laboratory. These practices span all phases of model development, from problem formulation through predictive implementation. Although it is not possible to exhaustively discuss every potential pitfall in ML workflows, we believe that our current guidelines capture best practices for avoiding the most common and potentially dangerous errors in this important emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiersansi发布了新的文献求助10
1秒前
1秒前
1秒前
Gauss应助土亢土亢土采纳,获得50
1秒前
pluto应助给我一块钱采纳,获得10
2秒前
2秒前
soda310应助修辛采纳,获得10
2秒前
3秒前
权夏瑶完成签到,获得积分10
3秒前
wangyf发布了新的文献求助10
3秒前
4秒前
MOOTEA发布了新的文献求助10
4秒前
ccty发布了新的文献求助10
5秒前
LIVE完成签到,获得积分10
5秒前
zeannezg发布了新的文献求助10
5秒前
一与余完成签到,获得积分10
5秒前
负责的妙松完成签到 ,获得积分20
6秒前
田様应助Lwh采纳,获得30
6秒前
6秒前
如意绾绾发布了新的文献求助10
7秒前
搞怪人雄完成签到,获得积分10
7秒前
lizzie发布了新的文献求助10
7秒前
不爱喝咖啡完成签到,获得积分10
7秒前
7秒前
儒雅的菠萝吹雪完成签到,获得积分10
7秒前
8秒前
9秒前
lilili发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
成就心锁发布了新的文献求助10
12秒前
Glileo完成签到 ,获得积分10
13秒前
13秒前
Hjj发布了新的文献求助10
13秒前
科目三应助cyr采纳,获得10
14秒前
WXF完成签到,获得积分20
14秒前
科研牛人发布了新的文献求助10
15秒前
15秒前
Miaomiao发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974155
求助须知:如何正确求助?哪些是违规求助? 3518357
关于积分的说明 11194133
捐赠科研通 3254466
什么是DOI,文献DOI怎么找? 1797312
邀请新用户注册赠送积分活动 876898
科研通“疑难数据库(出版商)”最低求助积分说明 806052