Understanding of Spinel Phases in Lithium-Rich Cathode for High-Energy-Density Lithium-Ion Batteries

锂(药物) 尖晶石 能量密度 材料科学 阴极 离子 磷酸钒锂电池 工程物理 化学 电化学 冶金 电极 物理 物理化学 心理学 有机化学 精神科
作者
Youyou Fang,Jiayu Zhao,Yuefeng Su,Jinyang Dong,Yun Lu,Neng Li,Haoyu Wang,Feng Wu,Lai Chen
出处
期刊:Energy material advances [American Association for the Advancement of Science]
卷期号:5 被引量:2
标识
DOI:10.34133/energymatadv.0115
摘要

Layered Li-rich oxides have attracted much attention because of higher capacity than that of traditional layered oxides (more than 250 mAh g −1 ). However, the intrinsic issues of Li-rich cathode materials suffer from lattice oxygen loss, poor rate capability, voltage fade, and limited cycle life. To tackle these problems, the Li-rich cathode containing intergrown layer and spinel phases was proposed, and this heterostructure material meets the requirements of high energy and stable surface with a fast Li + diffusion channel. Herein, we review the recent progress and in-depth understanding about heterostructure including microstructure and morphology, performance of advancement and degradation mechanisms, and modification strategies. Special attention is given to the high-performance energy mechanism as follows: (a) spinel phase and oxygen vacancy jointly enhance the lattice structure and prevent the irreversible oxygen release, (b) higher capacity is achieved by promotion of activation of Li2MnO3 phase and control of the activation rate to realize stable long-term cyclability, and (c) spinel phase provides the 3D interconnected Li + diffusion channels and protects the surface region from side reactions. The other issue that aroused interest is the undesirable changes of phase transition and degradation mechanisms as follows: (a) the key reconstruction process is to produce a “good” spinel to maintain the surface and interior structure stability. (b) It is significant to figure out the structure degradation and phase transition mechanism in the cycled heterostructure. This review aims to provide inspiration and opportunities for the design of high-energy-density cathode materials, thereby bridging the gap between laboratory research and practical battery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
CipherSage应助徐佳乐采纳,获得10
5秒前
冷静灵竹完成签到,获得积分10
9秒前
10秒前
英勇可乐完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
OnMyWorldside发布了新的文献求助10
15秒前
小璐发布了新的文献求助10
16秒前
徐佳乐发布了新的文献求助10
16秒前
16秒前
偷乐发布了新的文献求助10
19秒前
19秒前
21秒前
小璐完成签到,获得积分10
21秒前
徐佳乐完成签到,获得积分10
22秒前
祥瑞完成签到,获得积分10
22秒前
调皮盼烟发布了新的文献求助10
37秒前
103921wjk发布了新的文献求助10
37秒前
38秒前
38秒前
科研通AI2S应助留胡子的霖采纳,获得10
38秒前
半斤完成签到 ,获得积分10
38秒前
bear发布了新的文献求助30
43秒前
ding应助踏实的星星采纳,获得10
43秒前
小小发布了新的文献求助10
44秒前
45秒前
大个应助调皮盼烟采纳,获得10
46秒前
47秒前
坚定白风完成签到,获得积分20
48秒前
尽如完成签到,获得积分10
50秒前
53秒前
坚定白风发布了新的文献求助10
54秒前
Hello应助jbtjht采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780146
求助须知:如何正确求助?哪些是违规求助? 3325451
关于积分的说明 10223189
捐赠科研通 3040655
什么是DOI,文献DOI怎么找? 1668944
邀请新用户注册赠送积分活动 798878
科研通“疑难数据库(出版商)”最低求助积分说明 758623