亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Translation Consistent Semi-Supervised Segmentation for 3D Medical Images

人工智能 翻译(生物学) 图像分割 计算机视觉 分割 计算机科学 医学影像学 图像配准 模式识别(心理学) 尺度空间分割 图像(数学) 生物化学 化学 信使核糖核酸 基因
作者
Y. Liu,Yu Tian,Chong Wang,Yuanhong Chen,Fengbei Liu,Vasileios Belagiannis,Gustavo Carneiro
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 952-968 被引量:17
标识
DOI:10.1109/tmi.2024.3468896
摘要

3D medical image segmentation methods have been successful, but their dependence on large amounts of voxel-level annotated data is a disadvantage that needs to be addressed given the high cost to obtain such annotation. Semi-supervised learning (SSL) solves this issue by training models with a large unlabelled and a small labelled dataset. The most successful SSL approaches are based on consistency learning that minimises the distance between model responses obtained from perturbed views of the unlabelled data. These perturbations usually keep the spatial input context between views fairly consistent, which may cause the model to learn segmentation patterns from the spatial input contexts instead of the foreground objects. In this paper, we introduce the Translation Consistent Co-training (TraCoCo) which is a consistency learning SSL method that perturbs the input data views by varying their spatial input context, allowing the model to learn segmentation patterns from foreground objects. Furthermore, we propose a new Confident Regional Cross entropy (CRC) loss, which improves training convergence and keeps the robustness to co-training pseudo-labelling mistakes. Our method yields state-of-the-art (SOTA) results for several 3D data benchmarks, such as the Left Atrium (LA), Pancreas-CT (Pancreas), and Brain Tumor Segmentation (BraTS19). Our method also attains best results on a 2D-slice benchmark, namely the Automated Cardiac Diagnosis Challenge (ACDC), further demonstrating its effectiveness. Our code, training logs and checkpoints are available at https://github.com/yyliu01/ TraCoCo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
43秒前
114514完成签到,获得积分10
46秒前
54秒前
Willow发布了新的文献求助10
58秒前
1分钟前
Willow完成签到,获得积分10
1分钟前
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
2分钟前
tian完成签到,获得积分20
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
NEM嬛嬛驾到完成签到,获得积分10
2分钟前
2分钟前
欢欢完成签到,获得积分10
3分钟前
3分钟前
拼搏姒发布了新的文献求助10
3分钟前
Hello应助yiyilan采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
WXKennyS发布了新的文献求助10
3分钟前
计划发布了新的文献求助10
4分钟前
4分钟前
AAA发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
WXKennyS发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582485
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938