Model ensemble techniques of machine learning algorithms for soil moisture constants in the semi‐arid climate conditions

干旱 环境科学 含水量 集成学习 算法 土壤科学 计算机科学 水文学(农业) 人工智能 地质学 岩土工程 古生物学
作者
Pelin Alaboz
出处
期刊:Irrigation and Drainage [Wiley]
标识
DOI:10.1002/ird.3037
摘要

Abstract In recent years, the use of prediction models based on intelligent algorithms has become widespread in soil science. However, each algorithm has advantages and disadvantages, and variable results can occur on different datasets. The evaluation of ensemble techniques for solving these problems is the current approach. Water problems will arise due to global warming, and soil water will become more important. This study aims to evaluate the predictive accuracy of different machine learning algorithms (support vector machine regression (SVR), random forest (RF), artificial neural network (ANN), and multivariate linear regression (MLR)) and ensemble techniques (equal weight [EQ], Bates–Granger‐BG), Granger–Ramanathan (GR), Akaike information criterion (AIC), and Bayesian information criterion (BIC)) on the field capacity (FC), wilting point (WP) and available water content (AWC) of soils. As a result, higher prediction accuracy was obtained with the RF algorithm than with the value machine learning algorithm in the estimation of moisture constants. The coefficients of determination (R 2 ) obtained for the prediction of FC, WP, and AWC via the RF algorithms were 0.624, 0.759 and 0.641, respectively. MLR had the highest error rate. Among the ensemble techniques, GR was the most successful. Lin's concordance correlation coefficient (LCCC) values obtained from the estimation of FC, WP, and AWC with the GR model were 0.801, 0.894, and 0.801, respectively. The root mean squared error (RMSE) and mean absolute error (MAE) values obtained in the estimation of the available water content with the MLR algorithm were 1.905 and 1.435, respectively, whereas these values were 1.173 and 0.767, respectively, when the GR model was used. As a result of the present study, better predictive results were obtained with ensemble techniques instead of evaluating the algorithms individually.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助终陌采纳,获得10
1秒前
Tough发布了新的文献求助10
2秒前
ttsong2完成签到,获得积分10
2秒前
骄傲yy完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
慕青应助谨慎小天鹅采纳,获得10
6秒前
6秒前
甜甜奶黄包完成签到,获得积分10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
李爱国应助自由无敌采纳,获得10
8秒前
9秒前
赘婿应助高子懿采纳,获得10
9秒前
乾雨发布了新的文献求助10
9秒前
小青椒应助科研通管家采纳,获得20
10秒前
华仔应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
11秒前
今后应助大鱼采纳,获得10
11秒前
11秒前
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
11秒前
fchen完成签到,获得积分20
12秒前
12秒前
壹号完成签到,获得积分10
12秒前
田磊完成签到,获得积分10
13秒前
14秒前
Honahlee发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085903
求助须知:如何正确求助?哪些是违规求助? 4301887
关于积分的说明 13405716
捐赠科研通 4126924
什么是DOI,文献DOI怎么找? 2260099
邀请新用户注册赠送积分活动 1264194
关于科研通互助平台的介绍 1198415