On the applications of neural ordinary differential equations in medical image analysis

计算机科学 常微分方程 颂歌 稳健性(进化) 人工神经网络 人工智能 节点(物理) 桥接(联网) 机器学习 微分方程 计算机安全 应用数学 数学 基因 工程类 数学分析 结构工程 生物化学 化学
作者
Hao Niu,Yuxiang Zhou,Xiaohao Yan,Jun Wu,Yuncheng Shen,Yi Zhang,Junjie Hu
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (9) 被引量:5
标识
DOI:10.1007/s10462-024-10894-0
摘要

Abstract Medical image analysis tasks are characterized by high-noise, volumetric, and multi-modality, posing challenges for the model that attempts to learn robust features from the input images. Over the last decade, deep neural networks (DNNs) have achieved enormous success in medical image analysis tasks, which can be attributed to their powerful feature representation capability. Despite the promising results reported in numerous literature, DNNs are also criticized for several pivotal limits, with one of the limitations is lack of safety. Safety plays an important role in the applications of DNNs during clinical practice, helping the model defend against potential attacks and preventing the model from silent failure prediction. The recently proposed neural ordinary differential equation (NODE), a continuous model bridging the gap between DNNs and ODE, provides a significant advantage in ensuring the model’s safety. Among the variants of NODE, the neural memory ordinary differential equation (nmODE) owns the global attractor theoretically, exhibiting superiority in prompting the model’s performance and robustness during applications. While NODE and its variants have been widely used in medical image analysis tasks, there is a lack of a comprehensive review of their applications, hindering the in-depth understanding of NODE’s working principle and its potential applications. To mitigate this limitation, this paper thoroughly reviews the literature on the applications of NODE in medical image analysis from the following five aspects: segmentation, reconstruction, registration, disease prediction, and data generation. We also summarize both the strengths and downsides of the applications of NODE, followed by the possible research directions. To the best of our knowledge, this is the first review regards the applications of NODE in the field of medical image analysis. We hope this review can draw the researchers’ attention to the great potential of NODE and its variants in medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
万能图书馆应助ganluren采纳,获得10
1秒前
yyhgyg发布了新的文献求助10
2秒前
呀小贝壳完成签到 ,获得积分10
3秒前
娴娴完成签到,获得积分10
3秒前
you完成签到,获得积分10
3秒前
合适的鼠标完成签到,获得积分20
3秒前
baibaibai完成签到,获得积分10
3秒前
北北北应助完美如冰采纳,获得10
4秒前
孔傥发布了新的文献求助10
4秒前
sunming发布了新的文献求助10
4秒前
做好人难完成签到,获得积分10
4秒前
5秒前
动如脱兔发布了新的文献求助10
6秒前
彳亍完成签到,获得积分10
6秒前
快乐觅露完成签到,获得积分10
6秒前
甜甜千兰完成签到,获得积分10
6秒前
6秒前
SciKid524完成签到 ,获得积分10
7秒前
甜美的芷完成签到,获得积分10
7秒前
6666发布了新的文献求助10
8秒前
执着的莆发布了新的文献求助10
8秒前
852应助一二采纳,获得10
9秒前
ww完成签到,获得积分10
9秒前
默默访冬完成签到,获得积分10
11秒前
11秒前
科研通AI5应助老麦采纳,获得10
11秒前
思源应助kuangx采纳,获得10
11秒前
Yuna完成签到,获得积分10
12秒前
YikeLizi发布了新的文献求助10
13秒前
理想三寻完成签到,获得积分10
13秒前
14秒前
sxt发布了新的文献求助10
14秒前
风轩轩发布了新的文献求助10
14秒前
孔傥完成签到,获得积分10
14秒前
ANN完成签到,获得积分10
15秒前
顾矜应助yangxt-iga采纳,获得10
15秒前
执着的莆完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462427
求助须知:如何正确求助?哪些是违规求助? 3925693
关于积分的说明 12181937
捐赠科研通 3578067
什么是DOI,文献DOI怎么找? 1965760
邀请新用户注册赠送积分活动 1004486
科研通“疑难数据库(出版商)”最低求助积分说明 898942