A geographical traceability method for Lanmaoa asiatica mushrooms from 20 township-level geographical origins by near infrared spectroscopy and ResNet image analysis techniques

可追溯性 钥匙(锁) 蘑菇 气候变化 计算机科学 地理 遥感 数学 统计 生态学 食品科学 生物 计算机安全
作者
Xiong Chen,Honggao Liu,Jieqing Li,Yuanzhong Wang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:71: 101808-101808 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101808
摘要

Food authenticity and traceability and climate change are key scientific issues that must be addressed in response to the food crisis in 2050. Lanmaoa asiatica mushroom is an expensive and nutritious fungi-based diets resource, it is necessary to identify its geographical origin and explore the impact of the climate on it. Thus, the purpose of this study is to establish a fast and accurate geographical traceability model based on L. asiatica mushrooms chemical information collected by near-infrared spectroscopy (NIRS) technology, and screen out key climate variables by competitive adaptive reweighted sampling (CARS) algorithm. Based on the NIRS information of L. asiatica mushrooms, two-dimensional correlation spectroscopy (2D-COS) images were generated and a residual neural network (ResNet) image recognition model was established to identify the geographical origin of L. asiatica mushrooms. The accuracy of training set and test set of ResNet model is 100%, and the loss value is 0.052, which indicates that the model is effective. In addition, the CARS algorithm was used to select the feature variables from 105 climate variables. Four important variables (February, March, and April precipitation and January minimum temperature) related to NIRS difference of L. asiatica mushroom were obtained by CARS algorithm. The results can provide a fast and accurate method for food authenticity and traceability research, and provide an innovative idea for screening key climate factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
小宝爸完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Cataphyll发布了新的文献求助10
4秒前
Zlang完成签到,获得积分10
4秒前
田様应助王浩水采纳,获得10
4秒前
美丽灵活呜呜豹完成签到,获得积分10
4秒前
4秒前
bbhk完成签到,获得积分10
5秒前
曹操的曹完成签到,获得积分10
6秒前
8秒前
派先生发布了新的文献求助10
8秒前
华仔应助悦耳静枫采纳,获得10
8秒前
谢大喵发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
JunfDai发布了新的文献求助10
12秒前
13秒前
打打应助shine采纳,获得10
14秒前
14秒前
小二郎应助lzg采纳,获得30
15秒前
15秒前
15秒前
xnz发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
李健应助辣味锅包肉采纳,获得10
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
温柔绍辉发布了新的文献求助10
21秒前
华仔应助南淮采纳,获得30
22秒前
惜缘完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5673041
求助须知:如何正确求助?哪些是违规求助? 4930916
关于积分的说明 15143100
捐赠科研通 4832344
什么是DOI,文献DOI怎么找? 2588128
邀请新用户注册赠送积分活动 1541871
关于科研通互助平台的介绍 1499988