A geographical traceability method for Lanmaoa asiatica mushrooms from 20 township-level geographical origins by near infrared spectroscopy and ResNet image analysis techniques

可追溯性 钥匙(锁) 蘑菇 气候变化 计算机科学 地理 遥感 数学 统计 生态学 食品科学 生物 计算机安全
作者
Xiong Chen,Honggao Liu,Jieqing Li,Yuanzhong Wang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:71: 101808-101808 被引量:10
标识
DOI:10.1016/j.ecoinf.2022.101808
摘要

Food authenticity and traceability and climate change are key scientific issues that must be addressed in response to the food crisis in 2050. Lanmaoa asiatica mushroom is an expensive and nutritious fungi-based diets resource, it is necessary to identify its geographical origin and explore the impact of the climate on it. Thus, the purpose of this study is to establish a fast and accurate geographical traceability model based on L. asiatica mushrooms chemical information collected by near-infrared spectroscopy (NIRS) technology, and screen out key climate variables by competitive adaptive reweighted sampling (CARS) algorithm. Based on the NIRS information of L. asiatica mushrooms, two-dimensional correlation spectroscopy (2D-COS) images were generated and a residual neural network (ResNet) image recognition model was established to identify the geographical origin of L. asiatica mushrooms. The accuracy of training set and test set of ResNet model is 100%, and the loss value is 0.052, which indicates that the model is effective. In addition, the CARS algorithm was used to select the feature variables from 105 climate variables. Four important variables (February, March, and April precipitation and January minimum temperature) related to NIRS difference of L. asiatica mushroom were obtained by CARS algorithm. The results can provide a fast and accurate method for food authenticity and traceability research, and provide an innovative idea for screening key climate factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嬗变的天秤完成签到,获得积分10
2秒前
sophia完成签到 ,获得积分10
3秒前
4秒前
小圭发布了新的文献求助10
5秒前
安澜完成签到,获得积分10
5秒前
6秒前
yuehan完成签到 ,获得积分10
6秒前
失眠发箍完成签到 ,获得积分10
7秒前
liang19640908完成签到 ,获得积分10
7秒前
聪慧芷巧发布了新的文献求助10
8秒前
10秒前
聪慧芷巧发布了新的文献求助10
10秒前
CCsouljump发布了新的文献求助10
14秒前
20秒前
22秒前
22秒前
优秀的dd完成签到 ,获得积分10
23秒前
zhangsan完成签到,获得积分10
24秒前
115566发布了新的文献求助30
27秒前
培培完成签到 ,获得积分10
28秒前
我很好完成签到 ,获得积分10
29秒前
江幻天完成签到,获得积分10
29秒前
机智咖啡豆完成签到 ,获得积分10
29秒前
韧迹完成签到 ,获得积分10
31秒前
Ray完成签到,获得积分10
33秒前
laber完成签到,获得积分0
33秒前
小圭完成签到,获得积分10
33秒前
BAI_1完成签到,获得积分10
38秒前
滴答dddd完成签到,获得积分10
39秒前
39秒前
qausyh完成签到,获得积分10
44秒前
布蓝图完成签到 ,获得积分10
45秒前
孙非完成签到,获得积分10
45秒前
CCsouljump完成签到 ,获得积分10
48秒前
elsa622完成签到 ,获得积分10
48秒前
49秒前
lxlcx应助two采纳,获得20
50秒前
nsk810431231完成签到 ,获得积分10
50秒前
无为完成签到 ,获得积分10
50秒前
闻屿完成签到,获得积分10
50秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369689
关于积分的说明 10456822
捐赠科研通 3089365
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251