Large Language Models Encode Clinical Knowledge

计算机科学 水准点(测量) 危害 人工智能 机器学习 钥匙(锁) 数据科学 语言模型 心理学 计算机安全 大地测量学 社会心理学 地理
作者
Karan Singhal,Shekoofeh Azizi,Tao Tu,S. Sara Mahdavi,Jason Lee,Hyung Won Chung,Nathan Scales,Ajay Kumar Tanwani,Heather Cole-Lewis,Stephen Pfohl,Perry W. Payne,Martin Seneviratne,Paul Gamble,Christopher B. Kelly,Nathaneal Scharli,Aakanksha Chowdhery,P. Mansfield,Blaise Agüera y Arcas,Dale A. Webster,Greg S. Corrado
出处
期刊:Cornell University - arXiv 被引量:35
标识
DOI:10.48550/arxiv.2212.13138
摘要

Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HeLL0完成签到 ,获得积分10
刚刚
Lialia完成签到 ,获得积分10
1秒前
陈过年完成签到 ,获得积分10
1秒前
ForZero完成签到 ,获得积分10
2秒前
刘文俊发布了新的文献求助10
3秒前
zzz发布了新的文献求助10
3秒前
可可完成签到,获得积分10
4秒前
6秒前
ddcc完成签到,获得积分10
6秒前
完美世界应助lunjianchi采纳,获得10
7秒前
阿旭完成签到 ,获得积分10
8秒前
科目三应助任全强采纳,获得10
8秒前
zyz发布了新的文献求助20
8秒前
SPQR完成签到,获得积分10
9秒前
爆米花应助lunjianchi采纳,获得10
10秒前
负责玉米发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
共享精神应助伍六七采纳,获得10
10秒前
天天快乐应助L2r采纳,获得10
13秒前
14秒前
15秒前
16秒前
共享精神应助2549360318采纳,获得10
17秒前
KaK关闭了KaK文献求助
18秒前
刘文俊完成签到,获得积分20
19秒前
旧城以西发布了新的文献求助10
21秒前
积极晓绿完成签到,获得积分10
21秒前
负责玉米完成签到,获得积分20
21秒前
小刘恨香菜完成签到,获得积分10
22秒前
22秒前
lsong完成签到,获得积分10
22秒前
陆归云完成签到,获得积分10
23秒前
ddcc发布了新的文献求助10
25秒前
123发布了新的文献求助10
26秒前
27秒前
研友_VZG7GZ应助光亮聪展采纳,获得10
27秒前
善学以致用应助黯然采纳,获得10
27秒前
28秒前
善良鱼哟发布了新的文献求助10
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955943
求助须知:如何正确求助?哪些是违规求助? 3502134
关于积分的说明 11106024
捐赠科研通 3232512
什么是DOI,文献DOI怎么找? 1786999
邀请新用户注册赠送积分活动 870307
科研通“疑难数据库(出版商)”最低求助积分说明 801960