八面体
原子单位
热失控
材料科学
原子扩散
透射电子显微镜
热的
无定形固体
密度泛函理论
四面体
结晶学
纳米技术
化学物理
化学
热力学
物理
计算化学
晶体结构
电池(电)
量子力学
功率(物理)
作者
Jitong Yan,Dingding Zhu,Hongjun Ye,Haiming Sun,Xuedong Zhang,Jingming Yao,Jingzhao Chen,Lin Geng,Yong Su,Pan Zhang,Qiushi Dai,Zaifa Wang,Jing Wang,Jun Zhao,Zhaoyu Rong,Hui Li,Baiyu Guo,Satoshi Ichikawa,Dawei Gao,Liqiang Zhang
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-10-13
卷期号:7 (11): 3855-3863
被引量:24
标识
DOI:10.1021/acsenergylett.2c01981
摘要
Understanding the thermal runaway mechanism of solid-state electrolytes is critical for the development of all-solid-state Li-metal batteries (ASLMBs). Herein we employ multiscale methods including in situ optical microscopy and cryo-transmission electron microscopy combining with density functional theory to reveal the failure mechanism of Li1.3Al0.3Ti1.7P3O12 (LATP). Li reacts with LATP to form an amorphous phase at elevated temperatures, which then crystallizes into Li3PO4 and LiP with additional Li3P and Li0.5TiO2 at even higher temperatures. The instability of the corner-sharing PO4 tetrahedra and TiO6 octahedra against Li at high temperature is the root cause of thermal runaway for LATP. Li diffusion into LATP causes the collapse of the PO4 tetrahedra and TiO6 octahedra, forming Li–O, Li–P–O, and Li–Ti–O species which release a large amount of heat, triggering thermal runaway of LATP. This work provides atomic-scale understanding of the thermal runaway of LATP, which offers an important clue to mitigate failure of ASLMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI