Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area

环境科学 高光谱成像 反演(地质) 地质学 总有机碳 遥感 土壤科学 地球科学 环境化学 地貌学 化学 构造盆地
作者
Yunhao Han,Bin Wang,Jingyi Yang,F Yin,He Li
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (4): 600-600
标识
DOI:10.3390/rs17040600
摘要

Rapidly obtaining information on the content and spatial distribution of soil organic carbon (SOC) in farmland is crucial for evaluating regional soil quality, land degradation, and crop yield. This study focuses on mountain soils in various crop cultivation areas in Shangzhou District, Shangluo City, Southern Shaanxi, utilizing ZY1-02D hyperspectral satellite imagery, field-measured hyperspectral data, and field sampling data to achieve precise inversion and spatial mapping of the SOC content. First, to address spectral bias caused by environmental factors, the Spectral Space Transformation (SST) algorithm was employed to establish a transfer relationship between measured and satellite image spectra, enabling systematic correction of the image spectra. Subsequently, multiple spectral transformation methods, including continuous wavelet transform (CWT), reciprocal, first-order derivative, second-order derivative, and continuum removal, were applied to the corrected spectral data to enhance their spectral response characteristics. For feature band selection, three methods were utilized: Variable Importance Projection (VIP), Competitive Adaptive Reweighted Sampling (CARS), and Stepwise Projection Algorithm (SPA). SOC content prediction was conducted using three models: partial least squares regression (PLSR), stepwise multiple linear regression (Step-MLR), and random forest (RF). Finally, leave-one-out cross-validation was employed to optimize the L4-CARS-RF model, which was selected for SOC spatial distribution mapping. The model achieved a coefficient of determination (R²) of 0.81, a root mean square error of prediction (RMSEP) of 1.54 g kg−1, and a mean absolute error (MAE) of 1.37 g kg−1. The results indicate that (1) the Spectral Space Transformation (SST) algorithm effectively eliminates environmental interference on image spectra, enhancing SOC prediction accuracy; (2) continuous wavelet transform significantly reduces data noise compared to other spectral processing methods, further improving SOC prediction accuracy; and (3) among feature band selection methods, the CARS algorithm demonstrated the best performance, achieving the highest SOC prediction accuracy when combined with the random forest model. These findings provide scientific methods and technical support for SOC monitoring and management in mountainous areas and offer valuable insights for assessing the long-term impacts of different crops on soil ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曦月发布了新的文献求助10
1秒前
科研通AI5应助许win采纳,获得30
1秒前
FashionBoy应助美女采纳,获得10
2秒前
3秒前
科目三应助黄子腾采纳,获得10
3秒前
5秒前
我是老大应助roumaoliang采纳,获得10
6秒前
靓丽大神发布了新的文献求助10
6秒前
jyyg发布了新的文献求助10
9秒前
22发布了新的文献求助10
9秒前
肖耶啵应助PL采纳,获得10
10秒前
10秒前
11秒前
clown应助Animagus采纳,获得50
11秒前
彬彬完成签到,获得积分10
14秒前
Jasper应助高挑的小蕊采纳,获得10
14秒前
Hello应助海凌钟采纳,获得10
14秒前
马小马发布了新的文献求助10
14秒前
呐呐发布了新的文献求助30
15秒前
科研通AI5应助LLL采纳,获得10
17秒前
可爱的函函应助亢kxh采纳,获得10
18秒前
20秒前
21秒前
qipengli完成签到,获得积分10
23秒前
23秒前
24秒前
22完成签到,获得积分10
24秒前
dxc完成签到 ,获得积分10
25秒前
25秒前
26秒前
26秒前
Liang完成签到,获得积分10
26秒前
小蘑菇应助梦里采纳,获得10
27秒前
感动归尘发布了新的文献求助10
27秒前
29秒前
坚强的哈密瓜完成签到,获得积分10
29秒前
亢kxh发布了新的文献求助10
29秒前
LLL发布了新的文献求助10
31秒前
wanci应助孟令涛采纳,获得10
33秒前
PAIDAXXXX完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333214
关于积分的说明 10260263
捐赠科研通 3048828
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338