Artificial Intelligence and Whole Slide Imaging Assist in Thyroid Indeterminate Cytology: A Systematic Review

卷积神经网络 医学 人工智能 细胞病理学 人工神经网络 巴氏染色 扫描仪 感知器 模式识别(心理学) 机器学习 医学物理学 放射科 计算机科学 病理 细胞学 宫颈癌 癌症 内科学
作者
Olia Poursina,Azadeh Khayyat,Sara Maleki,Alireza Amin
出处
期刊:Acta Cytologica [Karger Publishers]
卷期号:: 1-12
标识
DOI:10.1159/000543344
摘要

Thyroid cytopathology, particularly in cases of atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS), suffers from suboptimal sensitivity and specificity challenges. Recent advancements in digital pathology and artificial intelligence (AI) hold promise for enhancing diagnostic accuracy. This systematic review included studies from 2000 to 2023, focusing on diagnostic accuracy in AUS/FLUS cases using AI, whole slide imaging (WSI), or both. Of the 176 studies, 13 met the inclusion criteria. The datasets range from 145 to 964 WSIs, with an overall number of 494 AUS cases ranging from eight to 254. Five studies used convolutional neural networks (CNN), and two used artificial neural networks (ANN). The preparation methods included Romanowsky-stained smears either alone or combined with Papanicolaou-stained or H&E, and Liquid-based cytology (ThinPrep). The scanner models that were used for scanning the slides varied, including Leica/Aperio, Alyuda Neurointelligence Cupertino, and PANNORAMIC™ Desk Scanner. Classifiers used include Feedforward Neural Networks (FFNN), Two-Layer Feedforward Neural Networks (2L-FFNN), Classifier Machine Learning Algorithm (MLA), Visual Geometry Group 11 (VGG11), Gradient Boosting Trees (GBT), Extra Trees Classifier (ETC), YOLOv4, EfficientNetV2-L, Back-Propagation on Multi-Layer Perceptron, and MobileNetV2. Although cytopathology is late in adopting AI, available studies have shown promising results in differentiating between thyroid lesions, including AUS/FLUS. Our review showed that AI can be especially effective in removing sources of errors such as subjective assessment, variation in staining, and algorithms. CNN has been successful in processing WSI data and identifying diagnostic features with minimal human supervision. ANNs excelled in integrating structured clinical data with image-derived features, particularly when paired with WSI, enhancing diagnostic accuracy for indeterminate thyroid lesions. A combined approach using both CNN and ANN can take advantage of their strengths. While AI and WSI integration shows promise in improving diagnostic accuracy and reducing uncertainty in indeterminate thyroid cytology, challenges such as the lack of standardization need to be addressed. This review highlights the heterogeneity in study designs, dataset sizes, and evaluation metrics. Future studies should focus on hybrid AI models, CNNs, ANNs, and standardized methodologies to maximize clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fxy完成签到 ,获得积分10
刚刚
陈陈发布了新的文献求助30
1秒前
6秒前
陈陈完成签到,获得积分10
7秒前
hello小鹿完成签到,获得积分10
7秒前
long完成签到 ,获得积分10
8秒前
HL发布了新的文献求助10
10秒前
直率的乐萱完成签到 ,获得积分10
13秒前
唯博完成签到 ,获得积分10
14秒前
小马甲应助过时的机器猫采纳,获得10
16秒前
香蕉觅云应助留胡子的霖采纳,获得10
17秒前
平常甜瓜完成签到 ,获得积分10
17秒前
zho应助研友_nvGy2Z采纳,获得10
19秒前
奋斗的凡完成签到 ,获得积分10
19秒前
安和桥北完成签到 ,获得积分10
21秒前
t通应助加菲丰丰采纳,获得10
21秒前
梅子酒发布了新的文献求助20
28秒前
28秒前
29秒前
Yusra完成签到,获得积分10
30秒前
SCI完成签到,获得积分10
31秒前
微笑冰棍完成签到 ,获得积分10
31秒前
平淡南霜完成签到,获得积分10
31秒前
32秒前
Mandy发布了新的文献求助10
36秒前
NexusExplorer应助山川采纳,获得10
39秒前
40秒前
一手灵魂完成签到,获得积分10
43秒前
酷波er应助空白采纳,获得10
43秒前
阿兰完成签到 ,获得积分10
46秒前
雨夜星空应助科研通管家采纳,获得10
46秒前
46秒前
hywel应助科研通管家采纳,获得20
46秒前
大模型应助科研通管家采纳,获得10
46秒前
彭于晏应助科研通管家采纳,获得10
46秒前
Akim应助科研通管家采纳,获得10
46秒前
隐形曼青应助科研通管家采纳,获得20
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
无花果应助科研通管家采纳,获得10
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878