亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigating the effect of process parameters on surface roughness of AISI M2 steel in EDM using deep learning neural networks

人工神经网络 表面粗糙度 材料科学 过程(计算) 工业与生产工程 表面光洁度 机械工程 冶金 工程类 计算机科学 人工智能 复合材料 操作系统
作者
Jabbar Abbas,Shukry H. Aghdeab,Amin Al‐Habaibeh
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:137 (1-2): 251-262 被引量:3
标识
DOI:10.1007/s00170-025-15184-9
摘要

Abstract This paper presents a unique and novel empirical study of electrical discharge machining (EDM) supported by artificial intelligence and statistical analysis. Electrical discharge machining (EDM) is a general non-traditional machining process for machining geometrically complicated parts or hard materials that are very difficult to machine by traditional machining operations. EDM creates the material removal process by using electric spark erosion. This paper experimentally investigates the process parameters of EDM on high-speed steel AISI M2 as a workpiece material with copper and brass as the electrodes. The effect of various process parameters on machining performance is investigated in this study using AI and statistical analysis where current, pulse on time and pulse off time are used for the experimental work and their effect on surface roughness (Ra) are studied. The results of the present work show that the optimum Ra levels in copper and brass electrodes are 2.16 µm and 3.43 µm, respectively, at current of 10 A, pulse on time of 100 µs, and pulse off time of 25 µs. The high levels of Ra in copper and brass electrodes are found to be 6.37 µm and 7.93 µm, respectively, at current of 42 A, pulse on time of 200 µs, and pulse off time of 4 µs. Deep learning neural networks and statistical analysis are used to evaluate the results. It has been found that there is a significant correlation between the process current and average surface roughness, and the pulsation time was not found significant. The use of deep learning neural networks has shown that AI could predict the average Ra values with an average error of about 0.39% for copper and of 0.26% for brass indicating the benefits of using AI in predicting the performance of manufacturing processes and the potential use of AI in future process modelling and applications. The drive to increase productivity and enhance quality is attracting manufacturers into adopting Industry 4.0 and artificial intelligence in their facilities to increase flexibility, reduce waste, and enhance efficiency. EDM is considered to be one of the most complex operations in manufacturing due to its high variability. Therefore, this paper suggests the use of deep learning neural networks to model the process and to predict the surface roughness outcome with limited input data. Statistical analysis was also used to test the statistical significance of each process parameter on the outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blenx完成签到,获得积分10
8秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
BowieHuang应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
59秒前
114514完成签到,获得积分10
1分钟前
1分钟前
Willow发布了新的文献求助10
1分钟前
1分钟前
Willow完成签到,获得积分10
1分钟前
1分钟前
2分钟前
tian发布了新的文献求助10
2分钟前
2分钟前
tian完成签到,获得积分20
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
NEM嬛嬛驾到完成签到,获得积分10
3分钟前
3分钟前
欢欢完成签到,获得积分10
3分钟前
3分钟前
拼搏姒发布了新的文献求助10
3分钟前
Hello应助yiyilan采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
WXKennyS发布了新的文献求助10
4分钟前
计划发布了新的文献求助10
4分钟前
4分钟前
AAA发布了新的文献求助10
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582485
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938