MDD-SSTNet: detecting major depressive disorder by exploring spectral-spatial-temporal information on resting-state electroencephalography data based on deep neural network

脑电图 静息状态功能磁共振成像 重性抑郁障碍 神经科学 心理学 功能连接 同步脑电与功能磁共振 人工神经网络 人工智能 模式识别(心理学) 计算机科学 认知心理学 扁桃形结构
作者
Qiurong Chen,Min Xia,J Li,Yiqian Luo,Xiuzhu Wang,Fali Li,Yi Liang,Yangsong Zhang
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:35 (2) 被引量:1
标识
DOI:10.1093/cercor/bhae505
摘要

Abstract Major depressive disorder (MDD) is a psychiatric disorder characterized by persistent lethargy that can lead to suicide in severe cases. Hence, timely and accurate diagnosis and treatment are crucial. Previous neuroscience studies have demonstrated that major depressive disorder subjects exhibit topological brain network changes and different temporal electroencephalography (EEG) characteristics compared to healthy controls. Based on these phenomena, we proposed a novel model, termed as MDD-SSTNet, for detecting major depressive disorder by exploring spectral-spatial-temporal information from resting-state EEG with deep convolutional neural network. Firstly, MDD-SSTNet used the Sinc filter to obtain specific frequency band features from pre-processed EEG data. Secondly, two parallel branches were used to extract temporal and spatial features through convolution and other operations. Finally, the model was trained with a combined loss function of center loss and Binary Cross-Entropy Loss. Using leave-one-subject-out cross-validation on the HUSM dataset and MODMA dataset, the MDD-SSTNet model outperformed six baseline models, achieving average classification accuracies of 93.85% and 65.08%, respectively. These results indicate that MDD-SSTNet could effectively mine spatial-temporal difference information between major depressive disorder subjects and healthy control subjects, and it holds promise to provide an efficient approach for MDD detection with EEG data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快千凝完成签到 ,获得积分10
刚刚
1秒前
xh发布了新的文献求助10
1秒前
情怀应助果奶绝甜采纳,获得30
1秒前
大力的诗蕾完成签到 ,获得积分10
1秒前
Leon发布了新的文献求助10
1秒前
Leon发布了新的文献求助10
2秒前
2秒前
2秒前
Leon发布了新的文献求助10
2秒前
Leon发布了新的文献求助10
2秒前
Leon发布了新的文献求助10
3秒前
Leon发布了新的文献求助10
3秒前
曾经问雁发布了新的文献求助10
3秒前
3秒前
三两白菜完成签到,获得积分10
3秒前
3秒前
JUZI发布了新的文献求助10
4秒前
酷酷紫夏发布了新的文献求助10
4秒前
进取拼搏发布了新的文献求助10
5秒前
5秒前
5秒前
Espionage发布了新的文献求助10
6秒前
6秒前
在水一方应助好蓝采纳,获得10
7秒前
7秒前
7秒前
8秒前
科研通AI6应助尹恩惠采纳,获得10
8秒前
10秒前
10秒前
10秒前
刘吉瀚发布了新的文献求助10
11秒前
英姑应助ruqinmq采纳,获得10
11秒前
Feeling完成签到,获得积分10
11秒前
学术裁缝完成签到,获得积分20
11秒前
天虹剑完成签到,获得积分10
11秒前
orixero应助RC_Wang采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262360
求助须知:如何正确求助?哪些是违规求助? 4423393
关于积分的说明 13769561
捐赠科研通 4298047
什么是DOI,文献DOI怎么找? 2358231
邀请新用户注册赠送积分活动 1354555
关于科研通互助平台的介绍 1315726