亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing mechanical ventilator reliability through machine learning based predictive maintenance

可靠性(半导体) 计算机科学 可靠性工程 机械通风机 预测性维护 机器学习 机械通风 医学 工程类 功率(物理) 物理 量子力学 精神科
作者
Žarko Peruničić,Ivana Lalatović,Lemana Spahić,Adna Ašić,Lejla Gurbeta Pokvić,Almir Badnjević
出处
期刊:Technology and Health Care [IOS Press]
标识
DOI:10.1177/09287329241301665
摘要

BackgroundWith the advancement of Artificial Intelligence (AI), clinical engineering has witnessed transformative opportunities, enabling predictive maintenance of medical devices, optimization of healthcare workflows, and personalized patient care. Respiratory equipment plays a vital role in modern healthcare, supporting patients with compromised or impaired respiratory capacities. However, ensuring the reliability and safety of these devices is crucial to prevent adverse events and ensure patient well-being.ObjectiveThis study aims to explore machine learning techniques to enhance predictive maintenance for mechanical ventilators.Method: The dataset used for this study contains information about 1350 entries of mechanical ventilators, made by 15 different manufacturers and available in 30 distinct models. Different machine learning algorithms, including Logistic Regression, Decision Trees, Random Forest, K-nearest Neighbors, Support Vector Machines, Naive Bayes, and XG Boost are developed and tested in terms of their performance in predicting mechanical ventilator failures.ResultsThe ensemble methods, particularly Random Forest and XGBoost, have proven to be more adept at handling the complexities of the dataset. The Decision Tree and Random Forest models both showed remarkable accuracies of approximately 0.993, while K-Nearest Neighbors (KNN) performed exceptionally with near perfect accuracy.ConclusionAdoption of automated systems based on artificial intelligence will help in overcoming challenges of ensuring quality of MDs that are already being used in healthcare institutions. Implementing machine learning-based predictive maintenance can significantly enhance the reliability of mechanical ventilators in healthcare settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助咸金城采纳,获得30
5秒前
兴尽晚回舟完成签到 ,获得积分10
8秒前
11秒前
在水一方应助小布采纳,获得30
12秒前
咸金城发布了新的文献求助30
17秒前
忧郁衬衫完成签到,获得积分10
24秒前
26秒前
三横一竖完成签到,获得积分10
33秒前
所所应助咸金城采纳,获得30
34秒前
深情安青应助科研通管家采纳,获得30
43秒前
情怀应助科研通管家采纳,获得10
43秒前
从容芮应助科研通管家采纳,获得10
43秒前
43秒前
个性归尘应助科研通管家采纳,获得10
43秒前
咸金城发布了新的文献求助30
49秒前
1分钟前
求索发布了新的文献求助10
1分钟前
自觉语琴完成签到 ,获得积分10
1分钟前
汉堡包应助儒雅寻菱采纳,获得10
1分钟前
zuoteamleader关注了科研通微信公众号
1分钟前
不去明知山完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研小白采纳,获得10
1分钟前
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
宣洋发布了新的文献求助10
1分钟前
科研通AI5应助幽默尔蓝采纳,获得10
1分钟前
科研通AI5应助科研小白采纳,获得10
1分钟前
宣洋完成签到,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
2分钟前
科研小白完成签到,获得积分10
2分钟前
2分钟前
Crh发布了新的文献求助10
2分钟前
who完成签到 ,获得积分10
2分钟前
2分钟前
大个应助魏伯安采纳,获得10
2分钟前
从容芮应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
从容芮应助科研通管家采纳,获得10
2分钟前
您得疼完成签到,获得积分20
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833707
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492252
捐赠科研通 3095719
什么是DOI,文献DOI怎么找? 1704674
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792