Deep Learning for Grading Endometrial Cancer

分级(工程) 子宫内膜癌 子宫切除术 妇科 放射科 医学 癌症 内科学 工程类 土木工程
作者
Manu Goyal,Laura J. Tafe,James Feng,Kristen E Muller,Liesbeth Hondelink,Jessica L. Bentz,Saeed Hassanpour
出处
期刊:American Journal of Pathology [Elsevier BV]
卷期号:194 (9): 1701-1711 被引量:2
标识
DOI:10.1016/j.ajpath.2024.05.003
摘要

Endometrial cancer is the fourth most common cancer in women in the United States, with a lifetime risk of approximately 2.8%. Precise histologic evaluation and molecular classification of endometrial cancer are important for effective patient management and determining the best treatment options. This study introduces EndoNet, which uses convolutional neural networks for extracting histologic features and a vision transformer for aggregating these features and classifying slides into high- and low-grade cases. The model was trained on 929 digitized hematoxylin and eosin-stained whole-slide images of endometrial cancer from hysterectomy cases at Dartmouth-Health. It classifies these slides into low-grade (endometrioid grades 1 and 2) and high-grade (endometrioid carcinoma International Federation of Gynecology and Obstetrics grade 3, uterine serous carcinoma, or carcinosarcoma) categories. EndoNet was evaluated on an internal test set of 110 patients and an external test set of 100 patients from The Cancer Genome Atlas database. The model achieved a weighted average F1 score of 0.91 (95% CI, 0.86 to 0.95) and an area under the curve of 0.95 (95% CI, 0.89 to 0.99) on the internal test, and 0.86 (95% CI, 0.80 to 0.94) for F1 score and 0.86 (95% CI, 0.75 to 0.93) for area under the curve on the external test. Pending further validation, EndoNet has the potential to support pathologists without the need of manual annotations in classifying the grades of gynecologic pathology tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
win完成签到,获得积分10
1秒前
852应助boshi采纳,获得10
1秒前
SYLH应助MXene采纳,获得10
2秒前
2秒前
2秒前
5秒前
6秒前
爱上甜蜜完成签到,获得积分10
6秒前
淡然从雪发布了新的文献求助10
7秒前
ZDddd发布了新的文献求助20
7秒前
梓萱发布了新的文献求助10
7秒前
吃土弯弯完成签到,获得积分10
8秒前
Bottle完成签到,获得积分10
9秒前
今后应助大能猫采纳,获得10
9秒前
9秒前
小幸运发布了新的文献求助10
10秒前
10秒前
kunkun完成签到,获得积分10
10秒前
11秒前
君与完成签到,获得积分10
12秒前
kunkun发布了新的文献求助10
13秒前
13秒前
善良宛筠完成签到,获得积分10
13秒前
14秒前
英俊的铭应助hao采纳,获得10
14秒前
14秒前
Dreamer0422发布了新的文献求助10
15秒前
宁士萧完成签到,获得积分10
15秒前
midoli完成签到,获得积分10
15秒前
16秒前
落落完成签到,获得积分10
16秒前
ZDddd完成签到,获得积分20
16秒前
16秒前
碰允发布了新的文献求助10
17秒前
可爱的函函应助万骛采纳,获得10
18秒前
orixero应助李哈哈采纳,获得10
18秒前
18秒前
18秒前
思源应助李华采纳,获得10
19秒前
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
成人寻常型银屑病医患共决策-海峡两岸及港澳地区专家共识 200
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829606
求助须知:如何正确求助?哪些是违规求助? 3372234
关于积分的说明 10471156
捐赠科研通 3091719
什么是DOI,文献DOI怎么找? 1701424
邀请新用户注册赠送积分活动 818380
科研通“疑难数据库(出版商)”最低求助积分说明 770853