Incremental bearing fault diagnosis method under imbalanced sample conditions

断层(地质) 计算机科学 样品(材料) 人工智能 采样(信号处理) 故障检测与隔离 数据挖掘 过程(计算) 机器学习 方位(导航) 样本量测定 分类器(UML) 集合(抽象数据类型) 模式识别(心理学) 数学 统计 计算机视觉 地质学 操作系统 滤波器(信号处理) 地震学 执行机构 化学 色谱法 程序设计语言
作者
Gezhi Liu,Lifeng Wu
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:192: 110203-110203 被引量:7
标识
DOI:10.1016/j.cie.2024.110203
摘要

The fault diagnosis of the rolling bearings is crucial for the maintenance of industrial equipment. The traditional bearing fault diagnosis methods based on deep learning focus on recognizing the initial training fault category and do not have the ability for incremental fault diagnosis. Although the replay-based continuous learning method has been used to solve this problem, there exists a sample imbalance problem between new and stored samples, which affects the accuracy of this method. To address the above issues, this paper proposes a new continuous learning method based on down-sampling and model-agnostic meta-learning (CL-DMAML). Firstly, the new class of fault samples is down-sampled according to the proposed information entropy criteria, ensuring that the sample size of the new fault data is the same as the sample size of various fault data in the storage space. This method reduces the loss of important information caused by down-sampling. Then, within the framework of model-agnostic meta-learning (MAML), the known bearing fault data are used to meta train the model, enabling the model can converge quickly in the case of small samples caused by down-sampling. Finally, the extracted samples are stored in memory space, combined with the previously stored data to form a training set, which is input into the meta trained model for classification training, so as to realize the incremental diagnosis process. The Paderborn University (PU) dataset and the Jiangnan University (JU) dataset are used to validate this paper proposed method. The results show that in three different cases of imbalanced samples, the accuracy is higher than other continuous learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywq发布了新的文献求助10
刚刚
liuyue发布了新的文献求助10
刚刚
嫩牛五方发布了新的文献求助10
1秒前
挥刀斩情丝完成签到,获得积分10
1秒前
coo发布了新的文献求助20
1秒前
2秒前
2秒前
亚伯拉罕发布了新的文献求助30
3秒前
mm255完成签到,获得积分10
3秒前
慕青应助cometx采纳,获得30
3秒前
曾国强发布了新的文献求助10
3秒前
4秒前
苏卿应助愤怒的山兰采纳,获得30
5秒前
九儿发布了新的文献求助10
6秒前
6秒前
再吃一颗苹果完成签到,获得积分10
7秒前
7秒前
8秒前
123456发布了新的文献求助10
9秒前
Koi发布了新的文献求助10
10秒前
11秒前
11秒前
称心的新之完成签到,获得积分10
12秒前
汉堡包应助熙慕采纳,获得10
12秒前
凶狠的雨灵完成签到,获得积分10
14秒前
poker完成签到,获得积分10
14秒前
ywq完成签到,获得积分10
14秒前
多宝鱼发布了新的文献求助10
15秒前
17秒前
17秒前
hyjhhy发布了新的文献求助10
20秒前
20秒前
小俊花发布了新的文献求助10
22秒前
22秒前
Jasper应助高兴的风华采纳,获得10
25秒前
chemhub完成签到,获得积分10
25秒前
尘尘完成签到,获得积分10
26秒前
Sugaryeah发布了新的文献求助10
26秒前
yzq完成签到,获得积分10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787805
求助须知:如何正确求助?哪些是违规求助? 3333381
关于积分的说明 10261608
捐赠科研通 3049094
什么是DOI,文献DOI怎么找? 1673414
邀请新用户注册赠送积分活动 801906
科研通“疑难数据库(出版商)”最低求助积分说明 760419