Machine learning predictions on the compressive stress–strain response of lattice-based metamaterials

人工神经网络 超材料 格子(音乐) 材料科学 Python(编程语言) 计算机科学 人工智能 算法 统计物理学 物理 光学 声学 操作系统
作者
Lijun Xiao,Gaoquan Shi,Weidong Song
出处
期刊:International Journal of Solids and Structures [Elsevier BV]
卷期号:300: 112893-112893 被引量:26
标识
DOI:10.1016/j.ijsolstr.2024.112893
摘要

Predicting the stress–strain curve of lattice-based metamaterials is crucial for their design and application. However, the complex nonlinear relationship between the mesoscopic structure of lattice materials and their macroscopic mechanical behavior makes prediction challenging. In this study, beam element models of over 20,000 lattice structures were established using Python scripts, and calculations were performed in ABAQUS to obtain training and testing datasets. The spatial features of each lattice-based metamaterial were then encoded into a graph, a data structure recognizable by machine learning algorithm. Utilizing machine learning methods, a Structure to Sequence Neural Network was constructed and trained, achieving rapid prediction of the compressive stress–strain curves for lattice-based metamaterials. Afterwards, several lattice structures were randomly selected and 3D printed. The accuracy of the simulation results as well as machine learning predictions was validated through quasi-static compression experiments. It is revealed that the proposed Neural Network model outperforms the traditional Artificial Neural Networks as the errors are reduced while the Coefficient of Determination is higher. The results demonstrate the accurate fitting between the complex spatial features of the lattice-based metamaterials and their stress–strain curves, which provides a potential methodology for inverse optimization of the lattice-based metamaterials in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏惋清完成签到 ,获得积分0
2秒前
学勾巴发布了新的文献求助10
3秒前
li完成签到,获得积分10
4秒前
wmk发布了新的文献求助10
5秒前
小小小新完成签到,获得积分20
7秒前
tyh完成签到,获得积分10
9秒前
梅川秋裤完成签到,获得积分10
10秒前
10秒前
pluto应助小小小新采纳,获得20
11秒前
12秒前
不懈奋进应助lorentzh采纳,获得30
13秒前
stresm完成签到,获得积分10
14秒前
14秒前
橘如发布了新的文献求助10
14秒前
14秒前
孙小雨完成签到,获得积分10
15秒前
小布完成签到 ,获得积分0
15秒前
17秒前
17秒前
玩命的紫南完成签到 ,获得积分10
19秒前
源源发布了新的文献求助20
19秒前
22秒前
忐忑的鱼完成签到,获得积分10
23秒前
23秒前
酷波er应助金鱼咕噜噜luu采纳,获得10
23秒前
缇娜完成签到,获得积分10
23秒前
24秒前
sxy完成签到,获得积分10
24秒前
qiao发布了新的文献求助10
26秒前
27秒前
老实皮皮虾完成签到,获得积分10
27秒前
Twinkle发布了新的文献求助10
28秒前
chenll1988完成签到 ,获得积分10
29秒前
源源完成签到,获得积分10
30秒前
徐晓婧关注了科研通微信公众号
31秒前
lxcy0612发布了新的文献求助10
32秒前
33秒前
36秒前
HopeStar完成签到,获得积分10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843