Machine learning predictions on the compressive stress–strain response of lattice-based metamaterials

人工神经网络 超材料 格子(音乐) 材料科学 Python(编程语言) 计算机科学 人工智能 算法 统计物理学 物理 光学 声学 操作系统
作者
Lijun Xiao,Gaoquan Shi,Weidong Song
出处
期刊:International Journal of Solids and Structures [Elsevier BV]
卷期号:300: 112893-112893 被引量:34
标识
DOI:10.1016/j.ijsolstr.2024.112893
摘要

Predicting the stress–strain curve of lattice-based metamaterials is crucial for their design and application. However, the complex nonlinear relationship between the mesoscopic structure of lattice materials and their macroscopic mechanical behavior makes prediction challenging. In this study, beam element models of over 20,000 lattice structures were established using Python scripts, and calculations were performed in ABAQUS to obtain training and testing datasets. The spatial features of each lattice-based metamaterial were then encoded into a graph, a data structure recognizable by machine learning algorithm. Utilizing machine learning methods, a Structure to Sequence Neural Network was constructed and trained, achieving rapid prediction of the compressive stress–strain curves for lattice-based metamaterials. Afterwards, several lattice structures were randomly selected and 3D printed. The accuracy of the simulation results as well as machine learning predictions was validated through quasi-static compression experiments. It is revealed that the proposed Neural Network model outperforms the traditional Artificial Neural Networks as the errors are reduced while the Coefficient of Determination is higher. The results demonstrate the accurate fitting between the complex spatial features of the lattice-based metamaterials and their stress–strain curves, which provides a potential methodology for inverse optimization of the lattice-based metamaterials in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwy完成签到,获得积分10
刚刚
苦哈哈发布了新的文献求助10
刚刚
Billy应助流体离子发电机采纳,获得30
1秒前
1秒前
小二郎应助Sara_Chen采纳,获得30
1秒前
魏煜佳完成签到,获得积分10
2秒前
2秒前
插座发布了新的文献求助10
3秒前
3秒前
花城完成签到 ,获得积分10
3秒前
hongyintao发布了新的文献求助30
3秒前
lxz发布了新的文献求助10
5秒前
完美世界应助邵小庆采纳,获得10
5秒前
迟迟完成签到,获得积分10
5秒前
5秒前
6秒前
AU发布了新的文献求助10
6秒前
7秒前
8秒前
苦哈哈发布了新的文献求助10
8秒前
打打应助房房房破防啦采纳,获得10
8秒前
8秒前
geather完成签到,获得积分10
9秒前
内向的惜芹完成签到,获得积分10
9秒前
Migrol完成签到,获得积分10
10秒前
cqnusq发布了新的文献求助10
10秒前
10秒前
祖问筠完成签到,获得积分10
10秒前
LS-GENIUS完成签到,获得积分10
11秒前
狂野达发布了新的文献求助10
11秒前
研友_VZG7GZ应助鱼仔采纳,获得10
11秒前
钮祜禄废废完成签到,获得积分10
12秒前
12秒前
怡然访天完成签到,获得积分10
12秒前
哈比发布了新的文献求助10
12秒前
李双艳发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938397
求助须知:如何正确求助?哪些是违规求助? 3483989
关于积分的说明 11026639
捐赠科研通 3214003
什么是DOI,文献DOI怎么找? 1776350
邀请新用户注册赠送积分活动 862552
科研通“疑难数据库(出版商)”最低求助积分说明 798511