钙钛矿(结构)
X射线
材料科学
导电体
化学
结晶学
物理
光学
复合材料
作者
Hang Yin,Jincong Pang,Shan Zhao,Haodi Wu,Zihao Song,Xing Li,Zhiping Zheng,Ling Xu,Jiang Tang,Guangda Niu
出处
期刊:The Innovation
[Elsevier BV]
日期:2024-06-05
卷期号:5 (4): 100654-100654
被引量:5
标识
DOI:10.1016/j.xinn.2024.100654
摘要
X-ray detection is crucial across various sectors, but traditional techniques face challenges such as inefficient data transmission, redundant sensing, high power consumption, and complexity. The innovative idea of a retinomorphic X-ray detector shows great potential. However, its implementation has been hindered by the absence of active layers capable of both detecting X-rays and serving as memory storage. In response to this critical gap, our study integrates hybrid perovskite with hydrion-conductive organic cations to develop a groundbreaking retinomorphic X-ray detector. This novel device stands at the nexus of technological innovation, utilizing X-ray detection, memory, and preprocessing capabilities within a single hardware platform. The core mechanism underlying this innovation lies in the transport of electrons and holes within the metal halide octahedral frameworks, enabling precise X-ray detection. Concurrently, the hydrion movement through organic cations endows the device with short-term resistive memory, facilitating rapid data processing and retrieval. Notably, our retinomorphic X-ray detector boasts an array of formidable features, including reconfigurable short-term memory, a linear response curve, and an extended retention time. In practical terms, this translates into the efficient capture of motion projections with minimal redundant data, achieving a compression ratio of 18.06% and an impressive recognition accuracy of up to 98.6%. In essence, our prototype represents a paradigm shift in X-ray detection technology. With its transformative capabilities, this retinomorphic hardware is poised to revolutionize the existing X-ray detection landscape.
科研通智能强力驱动
Strongly Powered by AbleSci AI