Fast Gradient Descent for Surface Capture Via Differentiable Rendering

渲染(计算机图形) 计算机科学 交替帧渲染 实时渲染 平铺渲染 基于图像的建模与绘制 三维渲染 并行渲染 可微函数 梯度下降 计算机图形学(图像) 计算 人工智能 计算机视觉 算法 软件渲染 计算机图形学 数学 三维计算机图形学 人工神经网络 数学分析
作者
Briac Toussaint,Maxime Genisson,Jean-Sébastien Franco
标识
DOI:10.1109/3dv57658.2022.00049
摘要

Differential rendering has recently emerged as a powerful tool for image-based rendering or geometric reconstruction from multiple views, with very high quality. Up to now, such methods have been benchmarked on generic object databases and promisingly applied to some real data, but have yet to be applied to specific applications that may benefit. In this paper, we investigate how a differential rendering system can be crafted for raw multi-camera performance capture. We address several key issues in the way of practical usability and reproducibility, such as processing speed, explainability of the model, and general output model quality. This leads us to several contributions to the differential rendering framework. In particular we show that a unified view of differential rendering and classic optimization is possible, leading to a formulation and implementation where complete non-stochastic gradient steps can be analytically computed and the full perframe data stored in video memory, yielding a straight-forward and efficient implementation. We also use a sparse storage and coarse-to-fine scheme to achieve extremely high resolution with contained memory and computation time. We show that results rivaling or exceeding the quality of state of the art multi-view human surface capture methods are achievable in a fraction of the time, typically around a minute per frame.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助rrw采纳,获得10
刚刚
刚刚
Lone完成签到,获得积分10
刚刚
sandyhaikeyi完成签到,获得积分10
1秒前
从容的完成签到 ,获得积分10
1秒前
Eliauk完成签到,获得积分20
1秒前
我是老大应助葛晶晶采纳,获得10
2秒前
解师发布了新的文献求助10
2秒前
郭辉完成签到,获得积分10
2秒前
2秒前
2秒前
小李新人完成签到 ,获得积分10
2秒前
贺英发布了新的文献求助10
2秒前
书剑飘香404完成签到,获得积分20
3秒前
3秒前
完美世界应助高高哑铃采纳,获得10
3秒前
敏感的沛容应助科研挂采纳,获得10
3秒前
3秒前
3秒前
科研通AI2S应助舒适路人采纳,获得30
3秒前
ding应助标致的冷梅采纳,获得10
4秒前
JCX完成签到,获得积分10
4秒前
小马甲应助独特翠丝采纳,获得10
5秒前
粗犷的抽屉完成签到,获得积分10
5秒前
小敏发布了新的文献求助10
5秒前
5秒前
6秒前
郭辉发布了新的文献求助10
6秒前
领导范儿应助体贴的兔子采纳,获得10
6秒前
3301发布了新的文献求助10
6秒前
momo123发布了新的文献求助10
6秒前
Yolen LI发布了新的文献求助10
6秒前
sandyhaikeyi发布了新的文献求助10
6秒前
7秒前
Akim应助高兴的问儿采纳,获得10
7秒前
7秒前
7秒前
小飞飞发布了新的文献求助10
8秒前
哇owao完成签到,获得积分10
9秒前
VT完成签到,获得积分10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786651
求助须知:如何正确求助?哪些是违规求助? 3332319
关于积分的说明 10255052
捐赠科研通 3047657
什么是DOI,文献DOI怎么找? 1672658
邀请新用户注册赠送积分活动 801463
科研通“疑难数据库(出版商)”最低求助积分说明 760204