Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images

人工智能 分级(工程) 计算机科学 前列腺 模式识别(心理学) 前列腺癌 监督学习 放射科 医学 计算机视觉 癌症 人工神经网络 内科学 工程类 土木工程
作者
Jinxi Xiang,Xiyue Wang,Xinran Wang,Jun Zhang,Sen Yang,Wei Yang,Xiao Han,Yueping Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106340-106340 被引量:27
标识
DOI:10.1016/j.compbiomed.2022.106340
摘要

The workflow of prostate cancer diagnosis and grading is cumbersome and the results suffer from substantial inter-observer variability. Recent trials have shown potential in using machine learning to develop automated systems to address this challenge. Most automated deep learning systems for prostate cancer Gleason grading focused on supervised learning requiring demanding fine-grained pixel-level annotations. A weakly-supervised deep learning model with slide-level labels is presented in this study for the diagnosis and grading of prostate cancer with whole slide image (WSI). WSIs are first cropped into small patches and then processed with a deep learning model to extract patch-level features. A graph convolution network (GCN) is used to aggregate the features for classifications. Throughout the training process, the noisy labels are progressively filtered out to reduce inter-observer variations in clinical reports. Finally, multi-center independent test cohorts with 6,174 slides are collected to evaluate the prostate cancer diagnosis and grading performance of our model. The cancer diagnosis (2-level classification) results on two external test sets (n = 4,675, n = 844) show an area under the receiver operating characteristic curve (AUC) of 0.985 and 0.986. The Gleason grading (6-level classification) results reach 0.931 quadratic weighted kappa on the internal test set (n = 531). It generalizes well on the external test dataset (n = 844) with 0.801 quadratic weighted kappa with the reference standard set independently. The model enables pathological meaningful interpretability by visualizing the most attended lesions which are highly consistent with expert annotations. The proposed model incorporates a graph network in weakly supervised learning with only slide-level reports. A robust learning strategy is also employed to correct the label noise. It is highly accurate (>0.985 AUC for diagnosis) and also interpretable with intuitive heatmap visualization. It can be unified with a digital pathology pipeline to deliver prostate cancer metrics for a pathology report.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJHUA完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
大大杰完成签到,获得积分10
4秒前
6秒前
hopen发布了新的文献求助10
7秒前
吕小沫发布了新的文献求助10
7秒前
9秒前
10秒前
fable发布了新的文献求助10
11秒前
後zgw完成签到,获得积分10
11秒前
12秒前
a136发布了新的文献求助10
13秒前
孤巷的猫完成签到,获得积分10
14秒前
白色梨花发布了新的文献求助10
14秒前
hopen完成签到,获得积分10
14秒前
hkxfg发布了新的文献求助10
16秒前
木木三发布了新的文献求助10
16秒前
zss完成签到 ,获得积分10
17秒前
笨笨千亦完成签到 ,获得积分10
17秒前
fable完成签到,获得积分10
19秒前
覃昔丰完成签到,获得积分10
20秒前
21秒前
21秒前
irvinzp完成签到,获得积分10
24秒前
123654完成签到 ,获得积分10
24秒前
香蕉觅云应助cxq采纳,获得10
24秒前
专注无施完成签到,获得积分10
25秒前
BLUK发布了新的文献求助10
26秒前
清风发布了新的文献求助10
27秒前
27秒前
28秒前
所所应助hkxfg采纳,获得10
28秒前
jenningseastera应助白色梨花采纳,获得10
30秒前
As发布了新的文献求助10
31秒前
31秒前
科研废物发布了新的文献求助10
34秒前
小美酱完成签到 ,获得积分0
34秒前
35秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367840
关于积分的说明 10447987
捐赠科研通 3087298
什么是DOI,文献DOI怎么找? 1698552
邀请新用户注册赠送积分活动 816826
科研通“疑难数据库(出版商)”最低求助积分说明 769973