Rail Fastener Status Detection Based on MobileNet-YOLOv4

紧固件 计算机科学 恒虚警率 特征提取 假警报 人工智能 模式识别(心理学) 汽车工程 工程类 结构工程
作者
Jian Fu,Xingjie Chen,Zhaomin Lv
出处
期刊:Electronics 卷期号:11 (22): 3677-3677 被引量:3
标识
DOI:10.3390/electronics11223677
摘要

As an important part of track inspection, the detection of rail fasteners is of great significance to improve the safety of train operation. Additionally, rail fastener detection belongs to small-target detection. The YOLOv4 algorithm is relatively fast in detection and has some advantages in small-target detection. Therefore, YOLOv4 is used for rail fastener status detection. However, YOLOv4 still suffers from the following two problems in rail fastener status detection. First, the features extracted by the original feature extraction network of YOLOv4 are relatively rough, which is not conducive to crack anomaly detection on rail fasteners. In addition, the traditional convolutional neural network has a larger number of parameters and calculations, which are difficult to run on the embedded system with low memory and processing power. To effectively solve those two problems, this paper proposes a rail fastener status detection algorithm based on MobileNet-YOLOv4 (M-YOLOv4). The edge features and texture features of rail fasteners are very important for rail fastener detection, and CSPDarknet53 cannot effectively extract the features of fasteners. The MobileNet is used to replace the CSPDarknet53 feature extraction network in the YOLOv4 algorithm, which can extract subtle features of rail fasteners and reduce the number of parameters and calculations of the algorithm. The experimental results show that the M-YOLOv4 algorithm has high detection accuracy and low resource consumption in rail fastener status detection. The false-alarm rate (FAR), missed-alarm rate (MAR), and error rate (ER) were 5.71%, 1.67%, and 4.24%, respectively, and the detection speed reached 59.8 fps. Compared with YOLOv4, the number of parameters and calculations were reduced by about 80.75% and 83.20%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzy完成签到,获得积分10
1秒前
1秒前
2秒前
秋子发布了新的文献求助10
2秒前
在水一方应助鱼粥很好采纳,获得10
2秒前
3秒前
不眠的人完成签到,获得积分10
4秒前
大兵哥发布了新的文献求助10
4秒前
六六完成签到,获得积分10
5秒前
Owen应助糖醋可乐采纳,获得10
5秒前
6秒前
6秒前
打打应助111采纳,获得10
6秒前
wyuanhu完成签到,获得积分10
6秒前
甜妹i怎么会不甜完成签到,获得积分10
6秒前
sv完成签到,获得积分10
7秒前
轩某完成签到,获得积分20
7秒前
7秒前
NikiJu完成签到 ,获得积分10
7秒前
哈哈完成签到 ,获得积分10
8秒前
yanchen发布了新的文献求助10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
党小波应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
trans应助科研通管家采纳,获得10
9秒前
zbw发布了新的文献求助10
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
kingwill应助lihua采纳,获得20
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
trans应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717