Predicting thyroid cancer recurrence using supervised CatBoost: A SHAP-based explainable AI approach

可解释性 医学 接收机工作特性 人工智能 机器学习 范畴变量 分类器(UML) 计算机科学
作者
Ahmad Hanani,Turker Berk Donmez,Mustafa Kutlu,Mohammed Mansour
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:104 (22): e42667-e42667 被引量:1
标识
DOI:10.1097/md.0000000000042667
摘要

Recurrence prediction in well-differentiated thyroid cancer remains a clinical challenge, necessitating more accurate and interpretable predictive models. This study investigates the use of a supervised CatBoost classifier to predict recurrence in well-differentiated thyroid cancer patients, comparing its performance against other ensemble models and employing Shapley Additive Explanations (SHAP) to enhance interpretability. A dataset comprising 383 patients with diverse demographic, clinical, and pathological variables was utilized. Data preprocessing steps included handling values and encoding categorical features. The dataset was split into training and testing sets using a 70:30 ratio. Model performance was evaluated using accuracy and area under the receiver operating characteristic curve. A comparative analysis was conducted with other ensemble methods, such as Extra Trees, LightGBM, and XGBoost. SHAP analysis was employed to determine feature importance and assess model interpretability at both the global and local levels. The supervised CatBoost classifier demonstrated superior performance, achieving an accuracy of 97% and an area under the receiver operating characteristic curve of 0.99, outperforming competing models. SHAP analysis revealed that treatment response (SHAP value: 2.077), risk stratification (SHAP value: 0.859), and lymph node involvement (N) (SHAP value: 0.596) were the most influential predictors of recurrence. Local SHAP analyses provided insight into individual predictions, highlighting that misclassification often resulted from overemphasizing a single factor while overlooking other clinically relevant indicators. The supervised CatBoost classifier demonstrated high predictive performance and enhanced interpretability through SHAP analysis. These findings underscore the importance of incorporating multiple predictive factors to improve recurrence risk assessment. While the model shows promise in personalizing thyroid cancer management, further validation on larger, more diverse datasets is warranted to ensure robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tombo100发布了新的文献求助10
1秒前
大模型应助遇见采纳,获得10
1秒前
1秒前
hxg发布了新的文献求助10
2秒前
小马甲应助小许的大米14采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
YMUSTC完成签到,获得积分10
2秒前
2秒前
研友_xLOMQZ发布了新的文献求助10
3秒前
conghuiqu完成签到,获得积分10
3秒前
xuyudi完成签到,获得积分10
3秒前
xiao双月完成签到,获得积分10
3秒前
联网中请稍等完成签到,获得积分10
4秒前
伶俐猪完成签到 ,获得积分10
5秒前
Market123580完成签到 ,获得积分10
5秒前
简明完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
wanci应助XYX采纳,获得10
7秒前
7秒前
7秒前
8秒前
qqqq完成签到,获得积分10
8秒前
hxg完成签到,获得积分10
8秒前
9秒前
清脆糖豆完成签到,获得积分10
9秒前
沉默发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
一蓑烟雨发布了新的文献求助30
10秒前
10秒前
10秒前
Dandanhuang发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774564
求助须知:如何正确求助?哪些是违规求助? 5618586
关于积分的说明 15436395
捐赠科研通 4907129
什么是DOI,文献DOI怎么找? 2640538
邀请新用户注册赠送积分活动 1588364
关于科研通互助平台的介绍 1543318