Global dominance of seasonality in shaping lake-surface-extent dynamics

季节性 优势(遗传学) 动力学(音乐) 地理 环境科学 生态学 生物 物理 生物化学 声学 基因
作者
Luoqi Li,Di Long,Yiming Wang,R. Iestyn Woolway
出处
期刊:Nature [Springer Nature]
卷期号:642 (8067): 361-368 被引量:24
标识
DOI:10.1038/s41586-025-09046-3
摘要

Lakes are crucial for ecosystems1, greenhouse gas emissions2 and water resources3, yet their surface-extent dynamics, particularly seasonality, remain poorly understood at continental to global scales owing to limitations in satellite observations4,5. Although previous studies have focused on long-term changes6-8, comprehensive assessments of seasonality have been constrained by trade-offs between spatial resolution and temporal resolution in single-source satellite data. Here we show that seasonality is the dominant driver of lake-surface-extent variations globally. By leveraging a deep-learning-based spatiotemporal fusion of MODIS and Landsat-based datasets, combined with high-performance computing, we achieved monthly mapping of 1.4 million lakes (2001-2023). Our approach yielded basin-level median user's and producer's accuracies of 93% and 96%, respectively, when validated against the Global Surface Water dataset7. Seasonality-dominated lakes constitute 66% of the global lake area and approximately 60% of total lake counts, with over 90% of the world's population residing in regions where such lakes prevail. During seasonality-induced extreme events, the impacts can exceed the combined magnitude of 23-year long-term changes and regular seasonal variations, doubling the contraction of 42% of shrinking lakes and fully offsetting the expansion of 45% of growing lakes. These results uncover previously hidden seasonal dynamics that are crucial for understanding hydrospheric responses to environmental changes9, protecting lacustrine systems10-12 and improving global climate models13,14. Our findings underscore the importance of incorporating seasonality into future research and suggest that advancements in the fusion of multisource remote-sensing data offer a promising path forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助唐诗鑫采纳,获得10
刚刚
jingle完成签到,获得积分10
刚刚
2秒前
2秒前
Ftplanet发布了新的文献求助10
2秒前
daladidala完成签到,获得积分10
2秒前
2秒前
lilianan完成签到,获得积分10
2秒前
gxy完成签到,获得积分10
2秒前
3秒前
裴佳晨发布了新的文献求助10
3秒前
4秒前
4秒前
何事秋风悲画扇完成签到,获得积分10
5秒前
5秒前
5秒前
大白应助寒冷的鞋子采纳,获得20
5秒前
香蕉觅云应助英吉利25采纳,获得10
5秒前
脖子完成签到,获得积分10
5秒前
zlu完成签到,获得积分10
6秒前
小马甲应助猪猪hero采纳,获得20
6秒前
6秒前
斯文败类应助hhdong采纳,获得10
6秒前
7秒前
苹什么发布了新的文献求助10
7秒前
lkx发布了新的文献求助10
7秒前
陈静发布了新的文献求助10
8秒前
阿吟发布了新的文献求助10
8秒前
张泽轩完成签到,获得积分10
8秒前
bubu完成签到,获得积分10
8秒前
慕青应助stay采纳,获得10
8秒前
9秒前
Dallas发布了新的文献求助10
9秒前
daladidala发布了新的文献求助10
9秒前
科研通AI6应助畅快的海白采纳,获得10
9秒前
10秒前
10秒前
orixero应助小小采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647059
求助须知:如何正确求助?哪些是违规求助? 4772926
关于积分的说明 15037602
捐赠科研通 4805794
什么是DOI,文献DOI怎么找? 2569989
邀请新用户注册赠送积分活动 1526857
关于科研通互助平台的介绍 1485983