Multimodal deep learning for predicting postoperative vault and selecting implantable collamer lens sizes using AS-OCT and ultrasound biomicroscopy images

作者
Qi Wan,Rui Gong,Ran Wei,Jing Tang,Yingping Deng,Ke Ma
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:51 (12): 1097-1106
标识
DOI:10.1097/j.jcrs.0000000000001747
摘要

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using anterior segment optical coherence tomography (AS-OCT) and ultrasound biomicroscopy (UBM) images combined with clinical features. Setting: West China Hospital, Sichuan University, Chengdu, Sichuan, China. Design: Deep-learning study. Methods: 626 AS-OCT and 1309 UBM images from 209 eyes of 105 participants with ICL V4c implantation were used. Features were extracted using a convolutional neural network (ResNet50) and combined with clinical data for model training. Machine learning algorithms including Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) were used to develop models for postoperative vault height prediction and ICL size selection. Models were validated using metrics such as mean absolute error (MAE), root mean squared error (RMSE), R 2 , accuracy, sensitivity, specificity, and precision. Results: The LightGBM, XGBoost, and RF models showed RMSE values below 150 μm, MAE values below 120 μm, and R 2 values around 0.4 in predicting postoperative vault height. The LightGBM model achieved the best performance in ICL size selection, with an accuracy of 0.904, sensitivity of 0.935, specificity of 0.907, and precision of 0.873, outperforming traditional methods and nearing the performance of senior doctors. Conclusions: The multimodal deep-learning model significantly improved the accuracy of predicting postoperative vault height and selecting ICL sizes for ICL V4c implantation, overcoming the limitations of single-modal data analysis. Future studies should expand sample sizes and conduct multicenter validations to enhance model generalizability and clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Icey发布了新的文献求助10
1秒前
兰豆完成签到,获得积分10
2秒前
呆萌千柳发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
4秒前
4秒前
欢呼山雁完成签到,获得积分10
4秒前
ZY完成签到,获得积分10
5秒前
5秒前
5秒前
dui发布了新的文献求助10
6秒前
6秒前
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
小马甲应助科研通管家采纳,获得30
7秒前
科目三应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
MET1应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
小诸葛应助科研通管家采纳,获得10
8秒前
MET1应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助周学习采纳,获得10
8秒前
yiban应助周学习采纳,获得10
8秒前
8秒前
科目三应助周学习采纳,获得10
8秒前
烟花应助Accpted河豚采纳,获得10
8秒前
范yx完成签到 ,获得积分10
9秒前
上官若男应助六小八采纳,获得30
9秒前
bias发布了新的文献求助10
9秒前
bkagyin应助yh采纳,获得20
10秒前
smalldesk发布了新的文献求助10
10秒前
咕噜咕噜咕应助吕亦寒采纳,获得10
12秒前
niNe3YUE应助吕亦寒采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577766
求助须知:如何正确求助?哪些是违规求助? 4662845
关于积分的说明 14743708
捐赠科研通 4603532
什么是DOI,文献DOI怎么找? 2526479
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465584