A machine learning-based prognostic stratification of locoregional interventional therapies for patients with colorectal cancer liver metastases: a real-world study

医学 结直肠癌 倾向得分匹配 回顾性队列研究 内科学 肿瘤科 接收机工作特性 癌症
作者
Jing Wang,Kai Wang,Kangjie Wang,Baogen Zhang,Siyu Zhu,Xuyang Zhang,Wang Li,Yingying Tong,Aiwei Feng,Hai-Bin Zhu,Ting Xu,Xu Zhu,Dong Yan
出处
期刊:Therapeutic Advances in Medical Oncology [SAGE Publishing]
卷期号:17
标识
DOI:10.1177/17588359251353084
摘要

Background: Colorectal cancer liver metastases (CRLM) represent a major cause of mortality in advanced colorectal cancer, with intra-arterial interventional therapy (IAIT) playing an increasingly important role in multidisciplinary management. This study aims to develop a machine learning (ML)-based prognostic model to predict survival outcomes in unresectable colorectal cancer liver metastases (uCRLM) patients undergoing IAIT treatment, enabling improved risk assessment. Design: A retrospective study. Objectives: This study aims to explore the effect of IAIT on the survival of patients with uCRLM. Methods: Retrospective data were obtained from patients with CRLM who visited Luhe Hospital and Peking University Cancer Hospital from January 2018 to January 2023. The study population was divided into two groups: one group received IAIT sequence by systemic standard of care (SOC) therapy group (ISOC; n = 340), while the other group received systemic SOC therapy alone ( n = 234). To reduce potential selection bias between the two groups, propensity score matching (PSM) was employed. The primary outcome measured was overall survival (OS). A prognostic model for IAIT was then constructed using five supervised ML models. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) and decision curve analysis. Kaplan–Meier analysis was used to reveal the OS risk stratification of the ML. To assess the prognostic nature of our models, we will include interaction terms between treatment modalities and key prognostic factors, followed by likelihood ratio tests to evaluate their significance. Results: After PSM 1:1, 574 patients were divided into two groups. The median OS of patients who received ISOC was significantly higher than those who received systemic SOC therapy alone (40 vs 25 months, p = 0.036). Among the five ML models, the Random Survival Forest model demonstrated the most robust prognostic performance with 1-year, 2-year, and 3-year AUCs of 0.899 (95% confidence interval (CI): 0.858–0.939), 0.903 (95% CI: 0.864–0.943), and 0.873 (95% CI, 0.828–0.919). In the external validation cohort, the AUCs for 1, 2, and 3 years were 0.665 (95% CI: 0.455–0.875), 0.737 (95% CI: 0.636–0.837), and 0.730 (95% CI: 0.640–0.821), respectively. Kaplan–Meier curve analysis confirmed the model’s prognostic power for the ISOC treatment strategy. We tested for interaction effects between treatment modalities (e.g., ISOC vs SOC) and the ML model’s risk strata, but no significant interaction was observed ( P for interaction p > 0.05). Conclusion: In this study, ISOC significantly improved the prognosis of patients. The ML model provides accurate prognostic stratification for uCRLM patients, which may aid in risk-based clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助咖飞采纳,获得10
刚刚
秃头小王完成签到,获得积分10
1秒前
1秒前
1秒前
世界纷纷扰扰完成签到,获得积分10
2秒前
2秒前
浮游应助美好斓采纳,获得30
3秒前
Ring发布了新的文献求助10
3秒前
浮游应助郭郭采纳,获得10
4秒前
打打应助郁李采纳,获得10
5秒前
6秒前
GeneYang完成签到,获得积分10
6秒前
snowdream发布了新的文献求助10
6秒前
ashes发布了新的文献求助10
6秒前
秃头小王发布了新的文献求助10
8秒前
苍狗发布了新的文献求助10
8秒前
8秒前
11秒前
11秒前
11秒前
彩色代柔发布了新的文献求助10
12秒前
Docsiwen完成签到 ,获得积分10
12秒前
啊标完成签到,获得积分10
12秒前
沈彬彬发布了新的文献求助10
13秒前
葛二蛋完成签到,获得积分10
13秒前
粗犷的眼睛完成签到,获得积分10
13秒前
丘比特应助土豆采纳,获得10
13秒前
无花果应助心灵美的幼蓉采纳,获得10
13秒前
花小胖完成签到,获得积分10
15秒前
15秒前
意忆发布了新的文献求助30
15秒前
15秒前
二智娃娃完成签到,获得积分10
15秒前
快快完成签到,获得积分10
16秒前
Ayaka2333发布了新的文献求助10
16秒前
18秒前
充电宝应助不想读书采纳,获得10
19秒前
Saber发布了新的文献求助10
19秒前
疯狂大泡芙完成签到,获得积分10
19秒前
流耶发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4723616
求助须知:如何正确求助?哪些是违规求助? 4082507
关于积分的说明 12625438
捐赠科研通 3788135
什么是DOI,文献DOI怎么找? 2092189
邀请新用户注册赠送积分活动 1118060
科研通“疑难数据库(出版商)”最低求助积分说明 994721