Consensus reaching for ordinal classification-based group decision making with heterogeneous preference information

群体决策 偏爱 计算机科学 群(周期表) 运筹学 人工智能 序数数据 信息技术 有序优化 信息和通信技术 机器学习 数据挖掘 知识管理 管理科学 统计 数学 心理学 万维网 经济 操作系统 社会心理学 有机化学 化学
作者
Zhuolin Li,Zhen Zhang,Wenyu Yu
出处
期刊:Journal of the Operational Research Society [Palgrave Macmillan]
卷期号:75 (2): 224-245 被引量:38
标识
DOI:10.1080/01605682.2023.2186806
摘要

AbstractAbstractIn group decision making (GDM), there may exist some problems that need to assign alternatives to some predefined ordered categories, which are called ordinal classification-based GDM problems. To obtain classification results that can be accepted by most decision makers (DMs), it is necessary to implement a consensus reaching process for ordinal classification-based GDM problems. In this paper, we study consensus reaching models for a new type of ordinal classification-based GDM problem, in which DMs do not provide criteria weights and category cardinalities but provide indirect and imprecise heterogeneous preference information. To do so, a consistency verification method is first proposed to check whether each DM’s preference information is consistent and then a minimum adjustment optimization model is developed to modify DMs’ inconsistent preference information. Afterwards, we establish some optimization models to obtain each DM’s possible categories for alternatives. Followed by this, we define the consensus levels of DMs and devise some optimization models to assist DMs in adjusting alternatives’ classification results and DMs’ preference information at the same time. Furthermore, a maximum support degree-based method is provided to determine the consensual classification result for alternatives. Finally, a numerical application and some sensitivity analysis are provided to justify the proposed models.Keywords: Decision analysisgroup decision makingmulti-criteriaconsensus reaching processordinal classification Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was partly supported by the National Natural Science Foundation of China (NSFC) under Grant 71971039 and the Key Program of the NSFC under Grant 71731003.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机发布了新的文献求助10
1秒前
小蘑菇应助微殇采纳,获得10
2秒前
3秒前
3秒前
小易完成签到,获得积分20
3秒前
3秒前
aaaaarfv完成签到,获得积分10
3秒前
PPPPP星星完成签到,获得积分10
3秒前
天真的冬瓜完成签到,获得积分10
4秒前
Ava应助张昌辉采纳,获得10
5秒前
6秒前
叶公子发布了新的文献求助10
6秒前
天菜发布了新的文献求助10
6秒前
Orange发布了新的文献求助10
7秒前
双子土豆泥应助kmkz采纳,获得10
7秒前
科研通AI2S应助aaaaarfv采纳,获得10
7秒前
7秒前
煎蛋完成签到,获得积分10
7秒前
DXR发布了新的文献求助30
7秒前
7秒前
richael发布了新的文献求助10
7秒前
7秒前
yin发布了新的文献求助10
8秒前
小二郎应助娃哈哈采纳,获得10
8秒前
壮观采文完成签到,获得积分10
8秒前
闵卷完成签到,获得积分10
8秒前
DQ完成签到,获得积分10
8秒前
勤奋的秋寒完成签到,获得积分10
9秒前
9秒前
可爱的函函应助黄毛虎采纳,获得10
10秒前
敬老院1号应助无我采纳,获得10
10秒前
11秒前
彭于晏应助钩子89采纳,获得10
11秒前
小白发布了新的文献求助10
11秒前
yysh1950发布了新的文献求助10
11秒前
11秒前
ihc完成签到,获得积分10
12秒前
Z丶完成签到,获得积分10
12秒前
DQ发布了新的文献求助10
12秒前
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4119523
求助须知:如何正确求助?哪些是违规求助? 3657979
关于积分的说明 11579516
捐赠科研通 3359758
什么是DOI,文献DOI怎么找? 1846062
邀请新用户注册赠送积分活动 910981
科研通“疑难数据库(出版商)”最低求助积分说明 827187