Finite element analysis of fretting wear considering variable coefficient of friction

微动 材料科学 微动磨损 摩擦系数 磨损系数 有限元法 打滑(空气动力学) 流离失所(心理学) 摩擦系数 机械 摩擦系数 复合材料 摩擦学 结构工程 热力学 工程类 物理 心理治疗师 心理学
作者
Ling Li,Le Kang,Shiyun Ma,Zhiqiang Li,Xiaoguang Ruan,Anjiang Cai
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [SAGE]
卷期号:233 (5): 758-768 被引量:16
标识
DOI:10.1177/1350650118800615
摘要

Fretting wear is a kind of material damage in contact surfaces caused by microrelative displacement between two bodies. It can change the profile of contact surfaces, resulting in loosening of fasteners or fatigue cracks. Finite element method is an effective method to simulate the evolution of fretting wear process. In most studies of fretting wear, the coefficient of friction was assumed to be constant to simplify model and reduce the difficulty of solving. However, fretting wear test showed that the coefficient of friction was a variable related to the number of fretting cycles. Therefore, this paper introduces the coefficient of friction as a function of the number of fretting cycles in numerical simulation. A wear model considering variable coefficient of friction is established by combining energy consumption model and adaptive grid technique. The nodes of contact surfaces are updated through the UMESHMOTION subroutine. The effects of constant coefficient of friction and variable coefficient of friction on fretting wear are analyzed by comparing the wear amount under different loading conditions. The results show that when compared with coefficient of friction model, fretting wear is obviously affected by variable coefficient of friction and the variable coefficient of friction model has a larger wear volume when the fretting is in partial slip condition and mixed slip condition. In gross slip condition, the difference of wear volume between variable coefficient of friction model and coefficient of friction model decreases with the increase in the displacement amplitudes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lawang发布了新的文献求助10
1秒前
minidong发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
lawang发布了新的文献求助10
2秒前
lawang发布了新的文献求助10
2秒前
lawang发布了新的文献求助10
2秒前
lawang发布了新的文献求助10
2秒前
lawang发布了新的文献求助30
2秒前
lawang发布了新的文献求助10
2秒前
3秒前
默默成风发布了新的文献求助10
3秒前
jujumaomao发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Xuuu完成签到,获得积分10
6秒前
满当当完成签到 ,获得积分10
7秒前
8秒前
8秒前
默默成风完成签到,获得积分10
8秒前
8秒前
Irving_0419完成签到,获得积分10
8秒前
9秒前
9秒前
Go1dstep发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
墨旱莲完成签到,获得积分0
9秒前
一路生花发布了新的文献求助10
10秒前
正直毛豆发布了新的文献求助10
10秒前
深情安青应助CC采纳,获得10
10秒前
CMCM完成签到,获得积分10
11秒前
11秒前
北筝完成签到,获得积分10
11秒前
12秒前
12秒前
Hour发布了新的文献求助10
12秒前
完美世界应助化学兔八哥采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653245
求助须知:如何正确求助?哪些是违规求助? 4789556
关于积分的说明 15063390
捐赠科研通 4811797
什么是DOI,文献DOI怎么找? 2574103
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488519