真菌毒素
玉米赤霉烯酮
黄曲霉毒素
镰刀菌
赭曲霉毒素A
青贮饲料
伏马菌素
呕吐毒素
污染
食品污染物
生物
食品科学
毒理
动物科学
植物
生态学
作者
Shelby Curry,Erika G Hendel,Paige N Gott,G. R. Murugesan,U Hofstetter-Schahs
标识
DOI:10.1093/jas/skz122.169
摘要
Abstract Mycotoxins are harmful secondary fungal metabolites and are of key concern to food and feed safety globally. In addition to compromised performance, mycotoxins negatively impact animal health. Although classic signs such as decreased feed intake and vomiting are known in the field as indicators for exposure, mycotoxins act as predisposing factors for diseases by immune suppression, causing inflammation, and modulating the gastrointestinal environment, even at low levels. This survey presents mycotoxin levels of corn samples from the 2018 harvest and compares these levels with those in previous years. New crop corn samples from various sources, were submitted starting from mid-August 2018, and consisted of corn (70%), corn silage (18%), and corn byproduct (12%). Samples were analyzed utilizing the liquid chromatography and tandem mass spectrometry (LC-MS/MS) method for six major mycotoxin groups: aflatoxins (Afla), type A trichothecenes (A-Trich), type B trichothecenes (B-Trich), fumonisins (FUM), zearalenone (ZEN), and ochratoxin-A (OTA). Data are presented for major mycotoxin classes in Table 1. The majority of samples contained at least 1 detectable mycotoxin with co-occurrence (≥ 2 mycotoxins) similar to 2017, and less than 2016. Prevalence of B-Trich has decreased compared with previous years, but average ppb is similar to 2017. Prevalence and average ppb of ZEN are similar to 2017, while FUM has increased in both prevalence and average ppb. Alfa prevalence has increased and average ppb is numerically higher than the previous two years. The preliminary results from the 2018 corn harvest suggest a continued risk from mycotoxins produced by Fusarium fungal species, and a potential increased risk of Afla compared to previous years. Because of the risk of multi-mycotoxin contamination in corn samples thus far, multiple mitigation strategies are needed beyond just adsorption, including biotransformation support of the immune system and liver function.
科研通智能强力驱动
Strongly Powered by AbleSci AI