已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulated annealing band selection approach for hyperspectral imagery

模拟退火 计算机科学 高光谱成像 模式识别(心理学) 合成孔径雷达 算法 维数之咒 贪婪算法 人工智能 最大值和最小值 启发式 数学优化 数学 数学分析
作者
Yang-Lang Chang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:4 (1): 041767-041767 被引量:6
标识
DOI:10.1117/1.3502611
摘要

In hyperspectral imagery, greedy modular eigenspace (GME) was developed by clustering highly correlated bands into a smaller subset based on the greedy algorithm. Unfortunately, GME is hard to find the optimal set by greedy scheme except by exhaustive iteration. The long execution time has been the major drawback in practice. Accordingly, finding the optimal (or near-optimal) solution is very expensive. Instead of adopting the band-subset-selection paradigm underlying this approach, we introduce a simulated annealing band selection (SABS) approach, which takes sets of non-correlated bands for high-dimensional remote sensing images based on a heuristic optimization algorithm, to overcome this disadvantage. It utilizes the inherent separability of different classes embedded in high-dimensional data sets to reduce dimensionality and formulate the optimal or near-optimal GME feature. Our proposed SABS scheme has a number of merits. Unlike traditional principal component analysis, it avoids the bias problems that arise from transforming the information into linear combinations of bands. SABS can not only speed up the procedure to simultaneously select the most significant features according to the simulated annealing optimization scheme to find GME sets, but also further extend the convergence abilities in the solution space based on simulated annealing method to reach the global optimal or near-optimal solution and escape from local minima. The effectiveness of the proposed SABS is evaluated by NASA MODIS/ASTER (MASTER) airborne simulator data sets and airborne synthetic aperture radar images for land cover classification during the Pacrim II campaign. The performance of our proposed SABS is validated by supervised k-nearest neighbor classifier. The experimental results show that SABS is an effective technique of band subset selection and can be used as an alternative to the existing dimensionality reduction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫归尘完成签到,获得积分10
1秒前
要楽奈完成签到,获得积分10
3秒前
hss完成签到 ,获得积分10
4秒前
4秒前
6秒前
asia完成签到 ,获得积分10
7秒前
花熊老大完成签到,获得积分20
7秒前
morichoc完成签到 ,获得积分10
8秒前
传奇3应助xima采纳,获得10
10秒前
10秒前
10秒前
喬老師完成签到,获得积分10
10秒前
Niko发布了新的文献求助10
10秒前
22222发布了新的文献求助10
11秒前
谢怡宁完成签到,获得积分20
13秒前
花熊老大发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
林狗完成签到 ,获得积分10
18秒前
科仔关注了科研通微信公众号
18秒前
α(阿尔法)完成签到 ,获得积分10
21秒前
wmk完成签到,获得积分10
22秒前
23秒前
23秒前
shuyi完成签到,获得积分10
24秒前
Jenkin完成签到,获得积分10
25秒前
Fx完成签到,获得积分10
25秒前
26秒前
shuyi发布了新的文献求助10
27秒前
喂喂完成签到,获得积分10
27秒前
Niko完成签到,获得积分10
27秒前
呼取尽余杯完成签到 ,获得积分10
28秒前
xima发布了新的文献求助10
28秒前
苹果绿完成签到,获得积分10
29秒前
29秒前
喂喂发布了新的文献求助10
31秒前
苹果绿发布了新的文献求助10
31秒前
俊逸沛菡完成签到 ,获得积分10
33秒前
34秒前
shuqi完成签到 ,获得积分10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4228762
求助须知:如何正确求助?哪些是违规求助? 3762179
关于积分的说明 11823666
捐赠科研通 3422599
什么是DOI,文献DOI怎么找? 1878175
邀请新用户注册赠送积分活动 931280
科研通“疑难数据库(出版商)”最低求助积分说明 839130