Automated Lung Cancer Segmentation Using a PET and CT Dual-Modality Deep Learning Neural Network

人工智能 医学 分割 Sørensen–骰子系数 豪斯多夫距离 卷积神经网络 模式识别(心理学) 深度学习 正电子发射断层摄影术 基本事实 模态(人机交互) 特征(语言学) 肺癌 相似性(几何) 核医学 反褶积 人工神经网络 图像分割 计算机科学 算法 图像(数学) 病理 哲学 语言学
作者
Siqiu Wang,R.N. Mahon,Elisabeth Weiss,Nuzhat Jan,Ross James Taylor,Philip Reed McDonagh,Bridget Quinn,L. Yuan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:115 (2): 529-539 被引量:10
标识
DOI:10.1016/j.ijrobp.2022.07.2312
摘要

To develop an automated lung tumor segmentation method for radiation therapy planning based on deep learning and dual-modality positron emission tomography (PET) and computed tomography (CT) images.A 3-dimensional (3D) convolutional neural network using inputs from diagnostic PETs and simulation CTs was constructed with 2 parallel convolution paths for independent feature extraction at multiple resolution levels and a single deconvolution path. At each resolution level, the extracted features from the convolution arms were concatenated and fed through the skip connections into the deconvolution path that produced the tumor segmentation. Our network was trained/validated/tested by a 3:1:1 split on 290 pairs of PET and CT images from patients with lung cancer treated at our clinic, with manual physician contours as the ground truth. A stratified training strategy based on the magnitude of the gross tumor volume (GTV) was investigated to improve performance, especially for small tumors. Multiple radiation oncologists assessed the clinical acceptability of the network-produced segmentations.The mean Dice similarity coefficient, Hausdorff distance, and bidirectional local distance comparing manual versus automated contours were 0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm for the unstratified 3D dual-modality model. Stratification delivered the best results when the model for the large GTVs (>25 mL) was trained with all-size GTVs and the model for the small GTVs (<25 mL) was trained with small GTVs only. The best combined Dice similarity coefficient, Hausdorff distance, and bidirectional local distance from the 2 stratified models on their corresponding test data sets were 0.83 ± 0.07, 5.9 ± 2.5 mm, and 2.8 ± 1.4 mm, respectively. In the multiobserver review, 91.25% manual versus 88.75% automatic contours were accepted or accepted with modifications.By using an expansive clinical PET and CT image database and a dual-modality architecture, the proposed 3D network with a novel GTVbased stratification strategy generated clinically useful lung cancer contours that were highly acceptable on physician review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
zwy应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
王霖应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
Chen发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
雪酪芋泥球完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
负责之柔完成签到,获得积分10
3秒前
菠萝炒饭发布了新的文献求助80
3秒前
sunen应助sherry0514采纳,获得10
4秒前
4秒前
5秒前
漂亮的佳宏完成签到 ,获得积分10
5秒前
Daodao发布了新的文献求助30
6秒前
6秒前
科研通AI5应助MaYYuan采纳,获得10
7秒前
南风发布了新的文献求助10
7秒前
7秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813761
求助须知:如何正确求助?哪些是违规求助? 3358153
关于积分的说明 10392200
捐赠科研通 3075499
什么是DOI,文献DOI怎么找? 1689310
邀请新用户注册赠送积分活动 812665
科研通“疑难数据库(出版商)”最低求助积分说明 767350